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ABSTRACT 

Soyasaponins have demonstrated health-promoting properties including plasma 

cholesterol-lowering, anti-carcinogenic and hepato-protective. Significant amounts of 

soyasaponins are found in soybeans and soy products. The role of soyasaponins in 

promoting improved health status has led to a need in understanding their bioavailability and 

metabolism in humans. 

Metabolism of soyasaponin I (3-0-[a-L-rhamnopyranosyl-(3-D-galactopyranosyl-(3-

D-glucuronopyranosyl] -olean-12-en-3(3,22(3,24-triol) by human gut microflora was 

investigated to elucidate the metabolism of dietary soyasaponins in human intestine. In a 

static in vitro fecal fermentation model, disappearance of soyasaponin I displayed an 

apparent first-order kinetics over 48 h. Two soyasaponin degradation phenotypes were 

-i 
observed among the subjects: rapid degraders with k = 0.23 ± 0.04 h , and slow with k -

-i 
0.07 ± 0.02 h . Two primary gut metabolites of soyasaponin I were identified as 

soyasaponin HI (3-0-[/3-D-galactopyranosyl-(3-D-glucuronopyranosyl]-olean-12-en-

3(3,22/3,24-triol) and soyasapogenol B (4-methoxyl-olean-l2-en-3(3,22(3,24-triol). 

Bioavailability of dietary soyasaponins was assessed in a human feeding study. After 

a single oral dose of soy drink, no soyasaponins or soyasapogenols was detected in the 24 h 

urine. About 8.6% of ingested group B soyasaponins was recovered as the form of 

soyasapogenol B, a major gut metabolite of group B soyasaponins, over a 5-day feces 

collection, suggesting dietary soyasaponins could be metabolized to soyasapogenols by gut 

microflora in vivo and excreted in feces. 
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The cellular absorbability and transport kinetics of soyasaponins was evaluated using 

Caco-2 transfer model, a human colon carcinoma cell model. The apical-to-basolateral 

absorption of soyasaponin I and soyasapogenol B was low with Papp of 0.9 to 3.5xl0"6 cm/sec 

and 0.3 to 0.6x10"6 cm/sec, respectively. Caco-2 cells were able to uptake soyasaponin I and 

soyasapogenol B from the apical membrane. The accumulation of soyasaponin I in Caco-2 

cells displayed a saturable and concentration-independent kinetics, while soyasapogenol B 

accumulated in Caco-2 cells in a concentration dependent manner. Soyasaponin I was not 

cytotoxic to Caco-2 cells at < 3 mM, while soyasapogenol B at > 1 mM significantly 

decreased cell viability in the culture. 

These findings suggest that ingested soyasaponins can be metabolized by human gut 

microorganisms to smaller and more hydrophobic molecules. Individuals may vary in their 

ability to metabolize soyasaponins in the gut. Dietary soyasaponins and its gut metabolite 

soyasapogenols may have very low absorbability in the human intestine. 
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GENERAL INTRODUCTION 

A. Introduction 

Saponins are the triterpenoid or steroid glycosides naturally occurring in plants and 

some marine organisms. Relatively high concentrations of saponins have been found in 

soybeans and soy products. The primary saponins in soybeans are the bisdesmosidic group 

A soyasaponins and the monodesmosidic group B soyasaponins. Saponins in the whole 

soybean seeds constitute about 60 to 75% group B soyasaponins and 25 to 40% group A 

soyasaponins by weight (Ireland et al. 1986; Gu et al. 2002). The dry weight basis 

concentration of soyasaponins has been reported to range from 1.4 to 5.9 p.mol/g in soybeans, 

0.2 to 114 pmol/g in soy ingredients, and 1.5 to 4.5 [imol/g in soy foods such as tofu, miso, 

soymilk and tempeh (Kitagawa et al. 1984; Ireland et al. 1986; Tsukamoto et al. 1995; Hu et 

al. 2002; Gu et al. 2002). 

Soyasaponins have been proposed to have certain health protective activities 

associated with soy consumption. Soyasaponins have been broadly believed as the major 

active components contributing to the cholesterol-lowering effect of soy products (Potter et 

al. 1995; Okenfull 2001). Soyasaponins inhibited various types of tumor development in 

vivo and in vitro, particularly colon cancer development (Rao et al. 1995; Koratkar et al. 

1997). Group B soyasaponins appeared to be inhibitory to human immunodeficiency virus 

(HIV) replication and infection in vitro (Hayashi et al. 1996). Hepato-protective activity of 

soyasaponins has been observed in a number of in vitro studies (Kim et al. 1997; Miyao et al. 

1997). Soyasaponins have displayed the ability to protect fibroblast cells from oxidative 

damage (Yoshikoshi et al. 1996). However, many of the studies investigating soyasaponin 
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biological activities have been limited to in vitro experiments and a few animal studies. The 

relevance of these findings to humans under in vivo conditions is not clear. 

Little is known about the bioavailability and metabolism of soyasaponins in animals 

and humans in spite of their health-promoting potential. There is also no direct in vivo 

evidence for many of the biological activities associated with orally ingested saponins. 

Saponins have been assumed to be poorly absorbed in the intestine. It was believed that 

their sugar chains had to be hydrolyzed to liberate aglycones by bacterial enzymes in the 

lower intestine (Gestetner et al. 1968; Karikura et al. 1990). There is no information on the 

fate of soyasaponins in the human gut, and also no data on their absorption and 

pharmacokinetics in animals or humans. 

B. Objective of current research 

The role of dietary soyasaponins in the potential promotion of improved health 

status, especially in cholesterol lowering and cancer inhibition, leads to a need to understand 

their bioavailability in humans. The overall objective of my doctorate research was to 

elucidate the metabolism of purified soyasaponins in the human intestine by gut 

microorganisms, and evaluate bioavailability of dietary soyasaponins in humans. Although it 

was unknown whether and how soyasaponins were metabolized by human gut microflora, we 

hypothesized that the sugar moiety of soyasaponins could be hydrolyzed in a stepwise 

manner to produce a series of secondary metabolites and eventually liberate the aglycones; 

and that the hydrophobic metabolites might be absorbed in the intestine. 

To test the hypothesis, three specific aims of my study were proposed: 1. to 

investigate the metabolism of soyasaponin I and its catabolic pattern by human gut 
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microorganisms and to identify the possible major metabolites using an in vitro static 

fermentation model; 2. to examine the individual variability of soyasaponin metabolism 

among human subjects and explore the factors affecting gut microbial degradation of 

soyasaponins; 3. to evaluate absorbability of dietary soyasaponins and their possible 

microbial metabolites in humans through a human feeding experiment and an in vitro Caco-2 

cell transport assay. 

The information obtained in this study will help to predict metabolism and 

bioavailability of dietary soyasaponins in the human intestine and to gain a better 

understanding on the potential and mechanisms of health-promoting properties of 

soyasaponins. 

C. Dissertation organization 

This dissertation consists of a literature review and two papers. The first paper, 

"Metabolism of soyasaponin I by human intestinal microflora", will be submitted to the 

Journal of Agriculture and Food Chemistry. The second paper, "Human intestinal absorption 

and bioavailability of soyasaponin I", will be submitted to the Journal of Nutrition. The 

papers are written in the format of the journals to which they will be submitted. A general 

conclusion will be included following the two papers. 
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LITERATURE REVIEW 

A. Soyasaponins 

Saponins are a family of steroid or triterpenoid glycosides present in plants. More 

than a thousand different types of saponins have been identified in a wide variety of plants. 

The basic structure of saponins is a triterpenoid or steroid aglycone attached to one or more 

sugar chains, resulting in an amphiphilic nature of the molecules (Hostettmann and Marston 

Soyasaponins are oleanene-type triterpenoid saponins. Soyasaponins can be divided 

into two groups, A and B, according to their respective aglycones, soyasapogenol A and 

soyasapogenol B (Figurel). The group A soyasaponins are bisdesmoside saponins with two 

different polysaccharides attached to C-3 and C-22 positions of soyasapogenol A (Figure 2). 

Eight isomers of group A saponins, named Aa, Ab, Ac, Ad, Ae, Af, Ag, and Ah according 

to their elution order in reverse phase high performance liquid chromatography (HPLC), 

1995). 

HO 

22 
-OH 

soyasapogenol A soyasapogenol B 

Figure 1. Structures of soyasapogenols 
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were isolated from soybeans and characterized by Shiraiwa et al. (1991). These group A 

soyasaponins have a terminal xylose or glucose residue attached to C-22. Hosny and 

Rosazza (2002) recently isolated and identified two new group A soyasaponins from 

soybeans, which were characterized as 3-0-{[a-L-rhamnopyranosyl-(l ->2)-{3-D-

galactopyranosyl-(l ->2)-fi-D-glucunonopyranosyl]-22-0-[ a-L-rhamnopyranosyl-(l ->2)-a-

L-arabinopyranosyl]}-3J3,22/3,24-trihydroxyl-olean-l2-ene, and 3-0-{[a-L-

rhamnopyranosyl-(l —>2)-/3-D-galactopyranosyl-(1 ->2)-(3-glucunonopyranosyl]-22-0-[a-L-

rhamnopyranosyl-(l ->2)-/3-glucopyranosyl]}-3(3,22(3,24-trihydroxyl-olean-l2-ene. The two 

new group A soyasaponins have a terminal rhamnose residue instead of a xylose or glucose 

residue. 

The group B soyasaponins are monodesmoside saponins with one di- or tri-

saccharide chain attached to soyasapogenol B. The group B soyasaponins isolated from 

soybeans have a 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) group 

conjugated to C-22. Five isomers of group B soyasaponins, named soyasaponin (3g, Pa, ya, 

yg and ag, have been isolated from soybeans (Figure 3) (Kudou et al. 1993). Several 

authors reported that DDMP conjugated soyasaponins were not stable and were easily 

converted into non- DDMP soyasaponins, named soyasaponin I, II, III, IV and V, 

respectively, during heated extraction procedures or cooking, in the presence of Fe, in 

alkaline solution, or upon storage in alcoholic solution at room temperature for several days 

(Massiot et al. 1996; Daveby et al. 1998; Yoshki et al. 1998; Gu et al. 2002). 
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OH 

CH CH 
CH 

CH 

HO 

OH 

OAc 

OAc 
OAc 

HO 
HO 

HO 

R1 R2 R3 

Soyasaponin Aa CH2OH p-D-Glc H 
Soyasaponin Ab CH2OH p-D-Glc CHjOAc 
Soyasaponin Ac CH2OH a-L-Rha CH2OAc 
Soyasaponin Ad H P-D-Glc CH2OAC 
Soyasaponin Ae CH2OH H H 
Soyasaponin Af CH2OH H CH2OAC 
Soyasaponin Ag H H H 
Soyasaponin Ah H H CH2OAc 

Figure 2. Structures of group A soyasaponins (Yoshiki et al. 1998) 
GIc: glucopyranosyl; Rha: rhamnopyranosyl; Ac: acetyl 
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OH 

DDMP 
COOH Chb 

CH7OH HO 

R2 

R1 R2 DDMP 

Soy saponin Pg CH2OH a-L-Rha Y 
Soy saponin I CH2OH a-L-Rha N 
Soy saponin Pa H a-L-Rha Y 
Soy saponin II H a-L-Rha N 
Soy saponin yg CH2OH H Y 
Soy saponin III CH2OH H N 
Soy saponin Pa H H Y 
Soy saponin IV H H N 
Soy saponin ag CH2OH P-D-Glc Y 
Soy saponin V CH2OH P-D-Glc N 

Figure 3. Structures of group B soyasaponins (Kudou et al. 1994) 
Rha: rhamnopyranosyl; GIc: glucopyranosyl; 
DDMP: 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one 
Y: yes; N: no. 
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B. Food sources and dietary intake of soyasaponins 

Soyasaponins have been found in variety of leguminous plants such as mung beans, 

cowpeas, scarlet runner beans, lentils, chickpeas, kidney beans, lupine seeds and alfalfa 

(Price et al. 1986; Tsukamoto et al. 1994; Kinjo et al. 1994; Oleszek et al. 1998). The 

reported concentration of soyasaponins in the leguminous seeds are summarized in Table 1. 

Genuine DDMP-conjugated group B soyasaponins have been found in various plants 

including Pisum sativum (Tsurumi et al. 1992), Phaseolus coccineus (Yoshiki et al. 1994), 

Lupinus angustifolius (Ruiz et al. 1995), and Medicago sativa (Massiot et al. 1992). 

Okubo's group (1996) determined the composition of DDMP-conj ugated soyasaponins in 

forty-one varieties of leguminous seeds. They found that soyasaponin /3g appeared to be the 

most prevalent form of soyasaponins and was present in thirty varieties among the legume 

seeds they analyzed. 

Table 1. Soyasaponin contents in various leguminous seeds 

Variety Soyasaponin contents (g/lOOg) Reference 

Kidney beans total saponins, 0.35 Price et al. 1986 

Runner beans total saponins, 0.34 Price et al. 1986 

Soybeans DDMP-conj ugated saponins, 0.22-0.24 Tsukamoto et al. 1995 

Cowpeas soyasaponin I and V, 0.12 Kinjo et al. 1998 

Garden peas soyasaponin I, 0.04-0.06 Kinjo et al. 1998 

Peanuts soyasaponin I, 0.10 Kinjo et al. 1998 

Broad beans soyasaponin I, 0.05 Kinjo et al. 1998 

Chickpeas soyasaponin I and Pg, 0.071-0.075 Ruiz et al. 1996 

Lentils soyasaponin I and Pg, 0.09-0.11 Ruiz et al. 1996, 1997 
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Soybean seeds contain about 2% glycosides mainly in the forms of isoflavones and 

soyasaponins (Tsukamoto et al. 1995). Whole soybean seeds contain about 60 to 75 % group 

B soyasaponins and 25 to 40 % group A soyasaponins according to the soyasaponin profiles 

reported by Ireland et al. (1986) and Gu et al. (2002). Group A soyasaponins are distributed 

mainly in the hypocotyls of soybean seeds (Shrraiwa et al. 1991). Group B soyasaponins in 

the soybean seeds are located in the plumule, hypocotyl and radicle (Tani et al. 1985). The 

concentration of soyasaponins in the soybean seeds varies in different genetic background 

and growth stages of soybeans as well as cultivation environment (Shimoyamada et al. 1991; 

Tsukamoto et al. 1995; Hu et al. 2002). 

Soybeans and soy foods are the major source of dietary soyasaponins consumed by 

humans. Soyasaponin contents in some soy ingredients and soy foods reported in the 

literature are summarized in Table 2. The composition and concentration of soyasaponin 

isomers in soy products are quite different depending on the product types and processing 

conditions. Hu et al. (2002) evaluated group B soyasaponin contents in various soy foods 

and soy ingredients. We found that DDMP-conj ugated soyasaponins were the primary group 

B soyasaponins detected in the raw soybean flour at a level of 3.3 jumole/g, whereas non-

DDMP soyasaponins were the major forms detected in the processed soy products and 

ingredients with concentrations ranging from 0.2 to 114 /xmole/g. The traditional soy foods 

such as soymilk, tempeh and tofu, appear to be low in soyasaponins compared to raw 

soybeans on an "as is" weight basis. However, soyasaponin concentrations on a dry weight 

basis in these soy foods were comparable to that in the raw soybean flour. Group B 

soyasaponins were undetectable in ethanol-washed soy protein concentrates but were high in 



www.manaraa.com

Table 2. Soyasaponin content and composition in commercial soy products * 

Group B soyasaponin content (nmol/g) 
V I II ctg Pg 3a total 

Soybean flour1 0.00 0.28 0.21 0.17 2.19 0.47 3.31 

Tofu2 0.00 0.31 0.13 0.01 0.11 0.03 0.59 

Tempeh3 0.00 0.76 0.39 0.01 0.28 0.09 1.53 

Soymilk 4 0.00 0.22 0.12 0.00 0.09 0.04 0.47 

Acid-washed soy concentrates 5 0.00 2.41 1.05 0.19 4.90 0.86 9.41 

Ethanol-washed soy concentrates5 0.00 0.08 0.12 0.00 0.00 0.00 0.20 

Isolated soy protein 500E 6 0.87 5.73 2.39 0.10 1.20 0.31 10.60 

Isolated soy protein Supro 6706 0.00 5.59 2.50 0.07 1.01 0.33 9.51 

Textured vegetable protein5 0.00 1.89 0.87 0.11 1.26 0.38 4.51 

Soy hypocotyl7 4.41 5.80 0.00 4.71 12.53 0.00 27.46 

Novasoy® 5 0.00 77.55 36.48 0.00 0.00 0.00 114.02 

Group A soyasaponin content (nmol/g) *** 

Soy germ 
Soy cotyledon8 

Defatted soy meal9 

Molasses 10 

Aa Ab Ac Ad Ae Af Ag Ah 
5.16 4.65 1.08 0.00 1.80 1.14 0.17 0.08 23.89 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.74 0.25 0.19 0.00 0.30 0.00 0.07 1.55 

8.38 8.14 1.22 0.00 2.71 1.02 0.24 0.00 21.71 

* All the samples were reported on as is weight basis 
** Hu et al. J. Agri. & Food Chem. 2002; 50:2587-2594 
*** Gu et al. J. Agri. & Food Chem. 2002; 50:6951-6959 
1 VintonSl, 1994 crop 
2 Mori-nu, firm 
3 Quong Hop & Company 
4 White Wave, Inc. 
5 Archer Daniels Midland Company 
6 Protein Technologies International 
7 Schouten USA Inc., toasted 
8 Kennongl6, 1997 crop 
9 Jilin3, 1997 crop 
10 Shanghai Liantang Food Factory 
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acid-washed soy protein concentrates, which were similar to those of soy protein isolates. 

Group A soyasaponins appeared to be concentrated in soy hypocotyl and soy molasses with 

concentrations of 23.9 and 21.7 /imole/g, respectively, but very low in defatted soy meal as 

1.6 ju,moles/g (Gu et al. 2002). The concentrations of soyasaponins in soy protein isolates 

were significantly higher than in raw soybean flour. Soy hypocotyls are rich in both group A 

and B soyasaponins with reported concentrations of 23.9 and 27.5 jLtmole/g, respectively (Hu 

et al. 2002; Gu et al. 2002). Novasoy® is produced by drum-drying the alcoholic extracts 

from soy protein concentrate production and was commercialized by Archer Daniels Midland 

Company (ADM). Soyasaponin concentration is thirty-fold higher in Novasoy® compared 

to raw soy flour. Soy hypocotyls and Novasoy® are the major sources of various isoflavone 

dietary supplements in the market place. Thus, these isoflavone-rich supplements also 

provide enriched sources of soyasaponins. 

Soy ingredients, such as soy protein isolate, soy protein concentrate and textured 

vegetable protein, have been used to produce the second generation soy foods because of 

their food processing functionalities as well as health promoting properties. The most widely 

available products are soy infant formulas, soy hot dogs, soy burgers, soy bacon and other 

soy-meat analogues. These products are low in soyasaponin content. Murphy's group 

(unpublished data 2002) reported 0.02 to 0.31 /imole/g group B soyasaponins in meatless 

franks, 0.53 to 1.83 /uniole/g in Harvest burgers®, and undetectable in soy-beef patty. 

Interestingly, soy infant formulas, which use soy protein isolates as the replacement of dairy 

proteins, contain fairly high amount of soyasaponins ranging from 1.2 - 2.3 /miole/g of dry 

formula. 
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Soy intake differs significantly among different ethnic populations. In Japan and 

China, the mean age of introduction of soy products is about 1.9 yr in the form of soy drink 

and tofu (Hsiao et al. 1999). According to Wu (1998), the estimated intake of soy products 

is 20 to 141 g/day in Chinese populations in Asia. The most commonly consumed soy 

foods in these populations were soy drinks, tofu, soybean curd jelly, miso and soy sauce. 

Total consumption of soy products in western countries was estimated to be 3 to 10 g/day. 

The most commonly consumed soy foods were tofu, soymilk, soy yogurt, tempeh, textured 

vegetable protein, soy nuts, vegetable-based soy burgers and soy hotdogs (Kirk et al. 1999). 

Therefore, estimated total daily intake of soyasaponins from soy consumption would be 

about 15 to 120 jumoles/day in Asian Chinese population and 0.7 to 6 ^moles/day in western 

countries. In the United States, the consumption of soy products has been increasing 

recently in response to the recognition of beneficial health effects of soybeans. The FDA 

has approved a health claim of soy protein for the reduction of the risk of coronary heart 

diseases. It was recommended the consumption of 25 g of soy protein per day with a heart-

healthy diet to achieve the effect (Schulz 1999). This amount of soy protein would provide 

about 200 immoles soyasaponins daily, provided that the soy protein was not ethanol-washed 

during its production. The amount of soyasaponins that people are exposed to in the diet is 

comparable to isoflavones. The estimated average daily isoflavone intake was 92 

jamoles/day among the Japanese (Wakai et al. 1999) and about 0.25 to 0.87 ^moles/day for 

healthy western postmenopausal Caucasian women (Kleijn et al. 1999). 

C. Human health-related properties of soyasaponins 

Many studies have demonstrated health-promoting activities of soyasaponins. 
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Soyasaponins could help to lower blood cholesterol level (Potter et al. 1993; Sauvaire et al. 

1996; Lacaille-Dubois and Wagner 1996) and inhibit growth of cancer cells (Rao et al. 

1995; Lee et al. 1999). Soyasaponins might be involved in eliminating digestive toxins and 

strengthening the immune system (Kenarova et al. 1990; Uemura et al. 1995). Although the 

mechanisms for these biological activities are not fully understood, the variety of effects are 

believed to be associated with the amphophilic nature of soyasaponins. Each of these 

potential health effects are reviewed in the following sections. 

C.l Hypocholesterolemic effect of soyasaponins 

The potential of soyasaponins to lower blood cholesterol level has drawn attention 

recently. Clinical trials have shown that consumption of soy protein, compared to other 

proteins such as those from milk or meat, could lower total and LDL-cholesterol levels in 

the blood (Anderson et al. 1995). Soyasaponins, one of the primary phytochemicals in soy 

products, have been proposed to have the ability to lower plasma cholesterol (Oakenfull et 

al. 1990; Potter et al. 1995). Oakenfull (2001) proposed two mechanisms by which 

soyasaponins could affect cholesterol metabolism. One mechanism suggested that 

soyasaponins might form insoluble complexes with cholesterol in the intestine to inhibit 

absorption of endogenous and exogenous cholesterol. A second mechanism implied that 

soyasaponins might interfere with the enterohepatic circulation of bile acids by forming 

mixed micelles with bile salts that would block reabsorption of bile acids. Oakenfull et al. 

(1984) observed that having 1% soyasaponin extract in 1% cholesterol-containing diet 

increased bile acid and neutral sterol excretion in rats. Sidhu and Oakenfull (1986) reported 
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that an isolated crude soyasaponin fraction from soy at 1% (g/v) reduced the absorption rate 

of bile salts in rat intestines by forming micelles with bile acids. 

However, direct observation of cholesterol-lowering after feeding soyasaponin-

containing diet on animal or humans is lacking. Calvert and Blight (1981) conducted a 

double-blind cross-over study feeding ten male hypercholesterolemic outpatients 50 g of soy 

flour per day with either 22 or 4 g saponins/kg for 4 weeks. They observed no significant 

changes in blood lipid profile or bile acid excretion either between the two treatments or 

between the levels at the beginning of the study and the end of the study. Moreover, two 

confounding phenomena have been observed in several studies. When 1.5 to 10% soy or 

quillaja saponins were added to the casein-based diets, regardless of fat level in the diet, 

there was a significant decrease of LDL cholesterol and LDL/HDL ratio in gerbils, rats, and 

rabbits accompanying increased bile acids excretion. The plasma cholesterol levels were 

not significantly different between the treatments that were either soyasaponin-depleted soy-

based diets or intact soy-based diets with extra soyasaponins added. However, the 

cholesterol levels were significantly lower in the animals fed the soy-based diets than those 

fed the casein diet (Oakenfull et al. 1984; Potter et al.\ 1993; Ueda et al. 1996). In addition, 

having 1 or 10% soyasaponins in the 1% cholesterol diets was effective for lowering serum 

and liver cholesterol and triglyceride levels in rats and chicks in comparison with the 1% 

cholesterol diets without soyasaponin supplementation, but this effect was not observed if 

the diets contained only 0.1% cholesterol (Oakenfull et al. 1984; Ueda et al. 1996). These 

observations suggest that: 1) there might be a threshold of dietary cholesterol level in these 

animal models to achieve increased serum and liver cholesterol levels; 2) the cholesterol-

lowering effect of soyasaponins is probably due to the interaction of soyasaponins with 
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cholesterol in the gut and consequently prevention dietary cholesterol from absorption. All 

these studies provide only indirect evidence that soyasaponins might be one of the factors 

contributing to soy's hypocholesterolemic effect. Additionally, all the soyasaponin fractions 

used in the above experiments were produced by alcoholic extraction, meaning the extracts 

also contained isoflavones and phenolic acids. Isoflavones have been shown to reduce total 

serum cholesterol level when added to casein diet in hamsters (Balmir et al. 1996), although 

their mechanism is not clear at this time. Interpretations of the cholesterol-lowering effect 

of soyasaponins are confounded by the mixed nature of alcoholic extracts of soy. Based on 

the results from these studies, it would be difficult at this point to conclude that 

soyasaponins are the primary active components in the hypocholesterolemic effect of soy 

products. 

C.2 Anti-carcinogenic effect of soyasaponins 

The epidemiological data from eastern Asian countries have suggested that 

consumption of soy products may be associated with the reduced risk of hormone and non-

hormone dependent cancers (Messina et al. 1994). Among the bioactive constituents of soy, 

soyasaponins have been shown to significantly suppress carcinogenesis in in vitro and in 

vivo experiments. Konoshima et al. demonstrated the inhibitory effect of soyasaponins on 

7,12-dimethyl-benz[a]anthracene (DMBA) initiated and 12-O-tetradecanoylphorbol-l 3-

acetate (TPA)-promoted mouse skin tumor model in a series of experiments (1992, 1996). 

They observed that 85 nmol of soyasaponin I, when applied before each TP A treatment, 

delayed the formation of papillomas in mouse skin and significantly reduced the numbers of 

papillomas formed per mouse. Koratkar and Rao (1997) showed that 3% soyasaponin in the 
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diet reduced the incidence of preneoplastic lesions on the colon mucosal in mice initiated by 

azoxymethane. 

Several mechanisms by which soyasaponins may act as chemopreventive agents 

have been postulated and investigated. Soyasaponins may have a direct cytotoxic effect on 

cancer cells. Sung et al. (1995) investigated the effect of soyasaponins on the growth and 

viability of HCT-15 colon carcinoma cells. Their data showed that 24 h exposure to 

soyasaponins at 10 to 600 ppm significantly decreased cell growth and viability in a dose-

dependent manner. Several studies suggested that there was an anti-mutagenic activity for 

soyasaponins. Plewa et al. (1999) demonstrated the anti-mutagenic activity of soyasaponins 

on mammalian cells. They observed that a fraction (PCClOO) isolated from soy molasses at 

50 ng/mL repressed the genotoxicity of dietary carcinogen 2-amino-3-methyl-imidio-(4,5-f) 

quinoline in human lymphocytes. This fraction also suppressed 2-

acetoxyacetylaminofluorene (2-AAAF) induced DNA damage in Chinese Hamster Ovary 

(CHO) cells. Berhow et al. (2000) identified the major components in this fraction as a 

mixture of group B soyasaponins. Furthermore, Berhow's group found that the purified 

soyasapogenol B from this PCClOO fraction exhibited the most potent protective effect 

against 2-AAAF induced gpt gene mutation in CHO cells among group B soyasaponins. 

The mechanism of the anti-mutagenic activity of soyasaponins is not clear. Berhow 

hypothesized that group B soyasaponins might be antimutagenic possibly by intercepting 

reactive molecules inside the cells. The data from Sung and Park (1999) supported this 

hypothesis. Their results showed that 0.3 mg/plate of soyasaponins significantly inhibited 

ferf-butylhydroperoxide-induced malonialdehyde production and increased cellular anti-

oxidative enzyme activities in a human hepatocarcinoma cell model. Soyasaponins at 10-50 
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Hg/mL showed an inhibitory effect on the DNA-aflatoxin B1 adduct formation in cultured 

human colon and liver cells (Joen and Sung 1999). Soyasaponins inhibited the expression 

of oncogenic Epstein-Barr virus genome in vitro (Tokuda 1988). These results suggest that 

soyasaponins might be effective in reducing cellular DNA damage caused by carcinogens. 

Furthermore, Oh and Sung (2001) evaluated the effect of soyasaponins on cell proliferation, 

differentiation and apoptosis in human colon cancer cells. Soyasaponins at 150 to 600 ppm 

inhibited TPA-induced cell proliferation by suppressing protein kinase C in a dose-

dependent manner. In this study, increased alkaline phosphatase activity was observed in 

the soyasaponin-treated cells, suggesting soyasaponins effectively induced differentiation of 

the cancer cells. Soyasaponins did not affect apoptotic activity in this study. Wu et al. 

(2001) reported that 5 to 25 \\M of soyasaponin I acted as a potent, specific sialytransferase 

inhibitor in a dose-dependent manner in vitro. Enhanced sialytransferase activity has been 

associated with oncogenic transformation and tumor metastasis (Harvey et al. 1992; Gessner 

et al. 1993). From these observations, it is evident that soyasaponins might be effective 

anti-carcinogens in the initiation and promotion stages of carcinogenesis. 

The inhibitory effect of soyasaponins on colon cancer development has drawn 

attention since saponins taken orally might not be absorbed and remain in the intestinal tract 

presumably. Bennink's group (2000) evaluated the potential of soy consumption to inhibit 

colon carcinogenesis in rats. In their study, it was found that full fat and defatted soy flour 

diets decreased the formation of precancerous lesions in the rats, whereas ethanol-washed 

soy concentrate did not reduce tumor incidence, and adding isoflavones alone to the ethanol-

washed soy concentrate did not inhibit tumor incidence (Bennink 2000). These data 

indicated that ethanol-soluble phytochemicals other than isoflavones might have been 
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responsible for the cancer inhibition effect of soy observed by Bennink. Since soyasaponins 

are one of the primary phytochemicals found in alcoholic extract of soy, their role in colon 

carcinogenesis deserves further investigation due to the anti-carcinogenic potential of 

saponins. The inhibitory effect of 3% of soyasaponins in AIN-76 diet over 14 weeks on the 

formation of preneoplastic lesions on the colon mucosal of mice has been reported 

(Koratkar and Rao 1997). However, it is notable that 3% soyasaponins in the diet is about 

ten-fold higher than the level that people would normally be exposed to through their diet 

since most of the soy foods contain about 0.02 to 0.5% soyasaponins (Hu et al. 2002). The 

mechanism of the colon cancer inhibiting effect of soyasaponins is not well understood. 

Besides the anti-carcinogenic activities of soyasaponins discussed above, it is also likely 

that soyasaponins may bind to primary bile acids in the gut to reduce the formation of 

secondary bile acids, considered colon cancer promoters (Sugezawa and Kaibara 1991). 

C.3 Other health-protective activities of soyasaponins 

Group B soyasaponins inhibited HIV replication and infection in vitro. Nakashima 

et al. (1989) demonstrated that 0.5 mg/mL soyasaponin I significantly reduced HIV-induced 

cytopathic effects on MT-4 cells and virus-specific antigen expression six days after 

infection. Soyasaponin II showed similar effects but was less potent than soyasaponin I. 

Soyasaponin II exerted dose-dependently virucidal activity on enveloped virus including 

human cytomegalovirus, influenza A virus, and HIV-1 at concentrations of 40, 200 and 

1000 \\M, and consequently reduced virus infectivity (Hayashi et al. 1997). 

The anti-hepatotoxic activity of soyasaponins has been observed in a number of in 

vitro studies with a comparable amount of cell density, about 105 to 106 per culture dish. 
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Soyasaponin I at doses of 50 to 500 (ig/mL reduced the elevation of glutamic pyruvic 

transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) activities induced by 

CCI4 in the primary cultured rat hepatocytes (Miyao et al. 1998). The structure-hepato-

protective relationship of soyasaponins has been investigated by Nohara's group (1997, 

1998). Alanine aminotransferase (ALT) activity was used as an indicator of 

immunologically induced liver injury on primary cultured rat hepatocytes. Soyasaponin I at 

90 (j,g/mL inhibited the increase of ALT in this experimental model and its effect appeared 

to be more potent than another triterpene saponin, glycyrrhizin (Arao et al. 1997). They 

also found no significant protective effect from soyasaponins I or II below 200 \\M, whereas 

soyasaponin DI and IV showed strong protection at 30 \xM (Kinjo et al. 1998). It indicated 

that the composition of the sugar moiety might play an important role in hepato-protective 

action of soyasaponins. The disaccharide-attached soyasaponins appeared to be more 

effective than trisaccharide-attached soyasaponins. Ikeda et al. (1998) compared the hepato-

protective effect of soyasapogenol B analogs from soyasaponin I using the same model. 

They found that at 30 |iM of soyasaponin HI, which has a disaccharide group, and 

soyasapogenol B monoglucuronide, which has a glucuronic acid group, appeared to be more 

effective than soyasaponin I, which has a trisaccharide group, and the aglycone, 

soyasapogenol B. 

Recent studies have shown varied results on the anti-oxidant activity of 

soyasaponins. Several studies demonstrated that the DDMP moiety of soyasaponins was the 

actual free radical scavenger (Yoshiki and Okubo 1995; Tsujino et al. 1994). Yoshikoshi's 

group investigated whether non-DDMP soyasaponins had the ability to protect the cells 



www.manaraa.com

20 

from oxidative damage (1996). In contrast, they found that 20 (\M non-DDMP 

soyasaponins, soyasaponin I and Ab, exhibited an even greater inhibition to cytotoxicity 

induced by hydrogen peroxide than DDMP-conjugated soyasaponin Pg in the cultured 

mouse fibroblasts. 

Rowlands et al. (2002) claimed that soyasapogenols had structure similarity to 

estrogen and examined estrogenic activity of soyasapogenol A and soyasapogenol B by 

measuring their ability to stimulate proliferation of estrogen responsive human breast cancer 

cells. Their results revealed that soyasapogenol B was antiproliferative and soyasapogenol 

A had weak estrogenic activity compared to E2 but equivalent to genistein in vitro. 

Caution should be used in interpreting the literature since most of the potential 

health promoting properties of soyasaponins were observed in animal models or in in vitro 

experiments with high doses not relevant to the levels consumed by humans. The relevance 

of these results to humans under in vivo conditions is not clear. In vivo information is 

needed to elucidate and verify these properties of soyasaponins in animal and humans. 

Moreover, people are exposed to a complex of soy constituents instead of a single 

constituent of soybeans through soy-rich diet. It will be of great importance to investigate 

not only the independent activity of each constituent but also the interaction among these 

soybean constituents, such as isoflavones, soyasaponins, phenolic acid and phytosterols, on 

the soy-attributed health beneficial effects. 

D. Toxicity of soyasaponins 

Oleszek (1990) has shown saponins to be hemolytic in vitro. It could be a health 

threat if saponins enter the circulation system directly. The oral toxicity of saponins to 
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al. 1965). Few negative effects have been observed in humans experiencing long-term 

consumption of saponins from edible plants. Saponins from quillaja bark, licorice root, and 

yucca rhizome are widely used as food additives, immune adjuvants, and anti-dermatophytic 

ingredients in cosmetics. These crude saponin extracts are classified as 'generally 

recognized as safe (GRAS)' by the U.S., FDA (Osamu et al. 1996). 

The systematic evaluation of soyasaponin toxicity is lacking. Soyasaponin I was not 

mutagenic up to 0.5 mg/plate in the Ames mutagenecity test (Czeczot et al. 1994). Saponins 

from gypsophylla, saponaria and soybeans are all triterpenoid saponins. Gypsophylla and 

saponaria saponins increased the permeability of intestinal mucosal cells of rats in vitro 

while soyasaponins appeared to be less effective (Johnson et al. 1986). The interaction 

between soyasaponins and nutrients has been indicated in several studies. Ikedo et al. 

(1996) reported that crude soyasaponins extracted from soybean hypocotyls interacted with 

bovine serum albumin (BSA) and increased resistance of BSA to chymotrypsin hydrolysis 

in vitro. Shimoyamada et al. (1998, 2000) observed that these crude soybean soyasaponins 

suppressed chymotryptic hydrolysis of soybean proteins and lactoglobulins in vitro. These 

findings suggested that soyasaponins might affect the digestibility and bioavailability of 

these proteins. Another nutritional problem associated with saponins in the diet is the 

interference with mineral absorption. A diet with 2% of gypsophila saponins or alfalfa 

saponins has been implicated in increasing fecal excretion of minerals and associated with 

the chronic induction of negative mineral balance in rats, while a similar level of 

soyasaponin I in the diet did not affect Fe and Zn absorption (Southon et al. 1988). 
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E. Metabolism and bioavailability of soyasaponins 

Detailed information on the fate of saponins in the animal or human gut is generally 

lacking. Saponins have been considered to be poorly absorbed in animals after oral dosing 

and might be either excreted unchanged or metabolized in the gut. Consequently, it was 

difficult to demonstrate how saponins act in vivo, and there is no direct in vivo evidence for 

many of the biological activities associated with saponins. 

Glycyrrhizin is a trterpenoid saponin from licorice with glycyrrhetinic acid as the 

aglycone. Ishida et al. (1989) showed that glycyrrhizin could be partially hydrolyzed to a 

sugar and an aglycone portion in the rat digestive tract. Kim et al. (2000) showed that 

glycyrrhizin was metabolized by human intestinal microflora to 18|3-glycyrrhetinic acid 

(GA), as a main product, and to 18p-glycyrrhetinic acid-3-O- (3 -D-glucuronide (GAMG) as a 

minor product. Glycyrrhetinic acid, the major gut metabolite of glycyrrhizin, was absorbable 

and displayed anti-inflammatory and anti-hepatotoxic activities in vivo (Horigome et al. 

2001 ; Nose et al. 1994). Among GA, GAMG and glycyrrhizin, GA displayed the most 

cytotoxic activity against tumor cell lines and the most potent inhibitory effect on rotavirus 

infection as well as Helicobacter pylori growth (Kim et al. 2000). 

The pharmacokinetics and metabolism of ginseng saponins, a group of steroid 

saponins, have been evaluated. Takino's group (Odani et al. 1983) reported that 2% of 

ingested ginsenosides with a disaccharide group were absorbed from the intestinal tract of 

rats, whereas only 0.1% of ingested ginsenosides with a trissachride group were absorbed. 

Therefore, these steroid saponins might have very low bioavailability in vivo. However, 

these saponins were reported to be metabolized by intestinal microbes possibly due to P-

glucosidase activity. Takino's group found that the oral dose of ginsenoside Rb2 was barely 
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metabolized in the gastric juice of rats and only underwent slight oxygenation (Karikura et 

al. 1991). However, six metabolites of ginsenoside Rb2 were identified in the large intestine 

content after oral dosing in rats. These metabolites were also found in vitro when Rb2 was 

incubated with rat cecal contents (Karikura et al. 1990). The pattern of ginsenoside 

degradation in the rat intestine showed that decomposition began with the cleavage of the 

terminal glucose residue of the oligosaccharide attached to C-3 or C-20 hydroxyl group of 

the aglycone. Then the hydrolysis proceeded stepwise to liberate the secondary products, 

metabolite I, H, HI, IV, V and XII (Figure 4). Ginseng saponin metabolism in humans was 

investigated by Hasegawa et al. (1996). Ginseng saponins showed a similar degradation 

pattern by human intestinal bacteria in vitro when compared to the pattern observed in rats. 

Prevotella oris, one of the bacterial species capable of metabolizing ginsenosides, was 

isolated in human fecal specimens (Hasegava et al. 1997). However, no ginsenosides or their 

microbial metabolites were detected in the urine or blood after a dose of 150 mg ginseng 

saponins/kg body weight was ingested by a human subject. It is noteworthy that the presence 

of ginsenosides and/or their microbial metabolites in the feces of this subject were not 

examined. Thus, there is no direct evidence whether ingested ginseng saponins could be 

metabolized in the intestinal tract in vivo. 

The metabolism of soyasaponins in humans has not been well characterized. 

Gestetner et al. (1968) incubated the content of cecum and colon of rats, chicks and mice 

with soyasaponins in vitro and detected both soyasaponins and soyasapogenols in the culture 

after 3 h of anaerobic incubation. The saponin-hydrolyzing enzymes purified from the cecal 

microflora of rats were identified as nonspecific glycosidases, which were able to liberate 

glucose, galactose, arabinose, rhamnose and glucuronic acid from soyasaponins after in vitro 
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Ginsenoside Rb2 O-Glc-Glc O-Glc-Arap 
Metabolite I O-Gic-Glc O-Glc 
Metabolite II O-Glc O-Glc-Arap 
Metabolite III O-Glc O-Glc 
Metabolite IV OH O-Glc-Arap 
Metabolite V OH O-Glc 
Metabolite XII OH OH 

Figure 4. Structures of ginsenoside Rb2 and its intestinal metabolites 
(Karikura et al. 1990). Glc: glucopyranosyl; Arap: arabinopyranosyl 

incubation. They suggested that mammalian gut microbial enzymes had the ability to 

hydrolyze various glycosidic bonds of soyasaponins to liberate aglycones. Human intestinal 

bacteria, especially Lactobacilli, Bacteroides and Bifidobacteria species, possess glycosidase 

and P-glucuronidase activities (Rowland et al. 1970; Hawksworth et al. 1971). These 

bacterial species may play a role in hydrolyzing sugar-conjugated soyasaponins in the human 

intestinal tract. The average length of time during which food residue stays in the large 

intestine is about 24 h or longer. The microbes in the large bowel would have sufficient time 

to interact with soyasaponins and perform their hydrolysis activities. Furthermore, 
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soyasaponins, either in the intact or partially hydrolyzed forms, might remain in the intestine 

long enough to exert their actions. Soyasaponin absorption was examined as well after oral 

dosing of these animals in Gestetner's study. Since there was no reliable method to quantify 

soyasaponins at that time, soyasapogenols and soyasaponins were determined qualitatively in 

the digestive tracts and the blood samples of these animals using TLC and hemolysis 

analysis. Neither soyasaponins nor soyasapogenols were found in the urine or blood 

samples, suggesting that soyasaponins might not be absorbed in these animals. However, 

there is no direct evidence to demonstrate absorbability and pharmacokinetics of 

soyasaponins in animals or humans. 

F. Influence of gut microflora on metabolism and bioavailability 

It is well established that the microbial community that inhabits the human large 

intestine plays an important role in metabolizing a variety of xenobiotics, thus potentially 

affecting the bioavailability and/or altering the activity and toxicity of ingested 

phytochemicals (Boxenbaum et al. 1979; Rowland 1998). The gut microflora possess a 

diverse range of metabolic activities to catalyze reactions including reductions, hydrolyses, 

hydroxylations, degradations and syntheses (Rowland 1988). Many plant glycosides 

ingested in the normal human diet are hydrophilic with relatively high molecular weight, 

such as flavonoids and cyanogenic glycosides. These compounds were considered to be 

poorly absorbed by the small intestine and pass largely unaltered into the lower bowel where 

they could be subjected to metabolism by the intestinal microflora (Rowland 1970). 

Gastrointestinal microbial metabolism often results in the formation of more lipophilic 

metabolites of ingested glycosides due to hydrolysis or reduction of glycosidic bonds, 
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deconjugations, dehydroxylations and decarboxylations (Boxenbaum et al. 1979). 

Microbial metabolism may be responsible for the prolonged retention of ingested substances 

or metabolites in systemic circulation due to possible regeneration of parent compounds 

from conjugated metabolites in the intestine through enterohepatic recirculation. 

There are a number of studies investigating the effect of the gut microbes on the 

bioavailability and metabolism of phytochemicals. Hollman et al. (2001) found that 

quercetin, a flavonoid present in plants, was absorbed twenty times more in quantity and ten 

times faster if ingested as qucertin-glucose than as qucertin-rutinose. The authors suggested 

that quercertin glucoside might be actively absorbed from the small intestine, whereas its 

rutinoside might be absorbed from colon after deglycosylation by gut microflora. Kim et al. 

(1998) revealed that rutin, hesperidin, naringin and poncirin were converted into their 

aglycones by the bacteria producing a-rhamnosidase and /3-glucosidase or endo-0-

glucosidase, while baicalin, puerarin and daidzin were converted into their aglycones by the 

bacteria producing ^-glucuronidase, C-glycosidase and /3-glycosidase, respectively. Grolier 

et al. (1998) demonstrated that the bioavailability of a- and (3-carotenes could be 

significantly improved in rats by reduction of gut microflora. Phytosterols in the diet are 

considered to be poorly absorbed in the small intestine, and consequently concentrated in 

the large intestine. The carbonaceous 17-side chain of phytosterols could be cleaved off by 

intestinal microbial (Roy et al. 1991). Oxidation - reduction at C3- hydroxyl group and 

hydrogénation of the A5 double bond of phytosterols by human fecal bacteria is common 

(Song et al. 2000). These gut metabolites of phytosterols were then excreted in the feces 

(Weststrate et al. 1999). 
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Gut microbial metabolism of isoflavones play an important role in determining the 

magnitude of isoflavone bioavailability. Liu and Hu (2002) evaluated the intestinal 

absorption and bioavailability of genistein using a Caco-2 cell culture model and a perfused 

rat intestinal model. They reported that genistein was well absorbed in both intestinal 

models, and suggested that the observed low bioavailability of genistein in vivo was 

probably not due to poor absorbability but extensive metabolism in the intestine. Setchell et 

al. (2002) showed that soy isoflavone glucosides were not absorbed intact across the 

intestine enterocytes, suggesting that their bioavailability might require initial hydrolysis by 

intestinal /3-glucosidase before entering the circulation. Isoflavone aglucones might be 

further degraded by gut microflora. Daidzin was metabolized to daidzein, and then to equol 

and O-desmethylangolensin (ODMA) by human gut microflora (Kim et al. 1998; Chang and 

Nair 1995). Gut microbial metabolism of genistein and glycitein has not been well 

characterized to date. Xu et al. (1995) showed the overall bioavailability of daidzein and 

genistein varied among individuals and apparently was inversely correlated with the extent 

of gut microbial degradation of isoflavones. Their results were extended by Zheng (2000). 

Zheng reported that three-fold greater bioavailability of genistein was observed in the 

Chinese subjects with a relatively low degradation of genistein by fecal microflora 

compared to the high isoflavone degraders. 

The differences in gut microflora population and bacterial enzyme activities would 

lead to different microbial metabolism of phytochemicals. There are many factors that 

influence gut microflora populations and enzyme activities, such as genetic factors, dietary 

factors, physical activities and gut peristalsis (Rowland et al. 1988). The genetic 

background of individuals might have some influence on gut microflora population and 
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metabolism. Mitsuoka et al. (1982) observed a higher ratio of anaerobes to aerobes and 

fewer enterococci in the feces of humans in the U. S. in comparison with the humans in 

India. Zheng (2000) observed that Chinese and Caucasians subjects significantly differed in 

their population distribution for daidzein degradation by gut microbes. However, it would 

be difficult to attribute this difference solely to genetic background of individuals, because 

dietary habits, cultural and environmental factors may play roles as well. The effect of diet 

on gut microflora and their metabolic activities has been reviewed by Rowland and Mallett 

(1970). High cholesterol and high meat diets are reported to significantly increase intestinal 

total anaerobic microflora including Bacteroides, Bifidobacteria, Peptococci and 

Lactobacilli species, and induce microbial ^-glucuronidase activity (Reddy et al. 1973 and 

1974). Finegold et al. (1974; 1983) reported that the adult Japanese diet resulted in an adult 

microbiota that differed from that of adults consuming a western-style diet. In an isoflavone 

bioavailability study, Zheng (2000) observed that Chinese subjects apparently consumed 

more cholesterol and red meat in their diet in comparison with Caucasian subjects. Zheng et 

al. suggested that the high meat and high fat diets might increase ^-glucuronidase activity of 

the gut microflora. Thus, the conjugated isoflavone aglycones excreted in the bile could be 

hydrolyzed by gut microflora to liberate more aglycones for reabsorption, which might 

contribute to the high bioavailability of isoflavones in the Chinese subjects. The profile of 

intestinal microbiota remain relatively unchanged once it is established changes provided 

that there is no significant change in dietary habit and health status (Stark and Lee 1982). 

However, there is shift in the composition of the intestinal microflora when aging. In 

elderly persons, bifidobacteria decrease or disappear, while lactobacilli, enterococci, 

enterobacteria and Clostridia increase (Holm 2003). 
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G. Using Caco-2 cell model to assess intestinal absorption and bioavailability of 

phytochemicals 

People are exposed to a variety of phytochemicals through diet. These 

phytochemical molecules may have to be absorbed from the gastrointestinal tract and enter 

the systemic circulation in sufficient quantities to exert their activities. Therefore, it is 

crucial to understand the absorption and bioavailability of these phytochemicals. Currently, 

there are a number of in silico, in vitro, ex vivo and in vivo approaches to predict 

permeability, absorbability and gastrointestinal metabolism of these molecules. Pelkonen et 

al. (2001) compared the common absorption and bioavailability models currently in use 

(Table 3). 

Cell culture has been used more widely in nutritional and pharmaceutical research to 

compensate human and animal models due to financial and ethical considerations. Several 

cellular models are available to study the absorption characteristics of xenobiotics. Two of 

the most widely used models are Caco-2 cells in monolayer and MDCK (Maudin-Darby 

canine kidney) cells in monolayer. Caco-2, a cell line from human colon adenocarcinoma, 

was established by Jorgen Fogh in 1974 from a 72-yr old Caucasian man (Fogh et al. 1977). 

MDCK cells were derived from a kidney of an adult female cocker spaniel and established 

by Madin and Barby in 1958 (Gaush et al. 1966). 

A potential advantage of Caco-2 cells is that they are human enterocyte-derived with 

a microvillous surface. As reviewed by Meunier et al. (1995), Caco-2 cells spontaneously 

differentiate into a highly polarized continuous monolayer after reaching confluence with 

functional tight cellular junctions. Well-developed brush border microvilli and an 

undisturbed water layer found on the apical surface resemble the properties of mature 
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Table 3. Common absorption and bioavailability models currently in use (Pelkonen et al. 2001) 

System Model Advantages Disadvantages 

In vitro Artificial membrane 
systems such as 
immobilized artificial 
membrane 

High throughput, easy to use, 
analytically easy 

Measure only transcellular 
permeation, lack of active 
transport 

Cell culture models such 
as Caco-2, MDCK 

Moderate to high throughput of drug 
screening, 
Measure active and passive transport 
Human epithelium for Caco-2 cells 

Labor intensive, analytically 
more difficult, intra - and inter-
lab variability present 

Brush border membrane 
vesicles 

Moderate throughput, 
Measure active and passive transport 

Labor intensive, analytically 
more difficult, intra - and inter-
lab variability present 

In situ Rat intestinal perfusion Close to in vivo situation, 
Have transporters, enzymes and 
relevant tight junctions 

Labor intensive, species 
differences, possible effects of 
manipulations, technically 
challenging 

In vivo Rat portal vein models Close to in vivo situation, 
Have transporters, enzymes and 
relevant tight junctions 
Have presystemic metabolism 

Labor intensive, species 
differences, possible effects of 
manipulations 
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intestinal absorptive mucosal cells with a high level of associated enzyme activities such as 

disaccharidases, peptidase, and alkaline phosphatase (Arthursson 1989; Hidalgo et al. 1989). 

These aspects of Caco-2 cells can be used to assess the rate and extent of absorption of 

xenobiotics. It has been found that Caco-2 cells express f-glycoprotein, which is expressed 

along the entire gut and works as an efflux pump that extrudes a wide range of structurally 

diverse substances from the cell. Thus, Caco-2 cells can be used to measure bi-directional 

transport of the substances. Differentiated Caco-2 cells have the ability to express 

cytochrome P450 CYP3A4 and phase II enzymes such as UDP-glucuronosyltransferase, 

sulfbtransferase and glutathiones-transferase so that this model could be used to study 

presystemic metabolism by intestinal enterocytes as well (Cam et al. 1995). Caco-2 cell 

models have also been used to study cholesterol absorption and the hypocholesterolemic 

effect of phytosterols because the cells displayed the ability to uptake micellar sterols and 

esterify sterols inside cells (Schulthess et al. 1996; Compassi et al. 1997). 

Using Caco-2 cell models, many studies have been performed to demonstrate the 

uptake, transport and accumulation of nutrients and pharmaceutical agents using 

mciroporous membrane inserts. However, the disadvantages of this system include that they 

need long culturing times (2-3 weeks) to express fully differentiated functions, the cells 

form very tight junctions in monolayer, and exhibit a high transepithelial resistance relative 

to that in vivo (Pelkonen et al. 2001). Additionally, Barthe et al. (1999) suggested that the 

Caco-2 cell system was static, and gave low rates of transport, and exaggerated the 

paracellular route compared to the small intestine. Lennernas (1997) summarized 

correlations of permeability from different in vitro transfer models with human data. He 

found that the permeability of the compounds via passive transport in Caco-2 monolayers 
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were comparable to those seen in the human colon, whereas the permeability of large 

hydrophobic compounds and carrier-mediated transported compounds were much lower in 

Caco-2 cells than in the human jejunum. The lower permeability in Caco-2 models might 

be partially due to a lower paracellular and/or a larger intervillous area available in vivo 

(Schwartz et al. 1995). Furthermore, we have to bear in mind that Caco-2 cells are 

cancerous cells in spite of their similarity to normal intestinal cells to some extent. It is 

possible that these cells may behave differently from the normal cells somehow. These 

factors should be taken into account when we interpret the absorbability data from Caco-2 

cell model and extrapolate to humans. 

The Caco-2 cell model has been widely used to measure absorbability of a variety of 

phytochemicals. Flavonoids can be used as an example. It is known that flavones and 

isoflavones can be found as conjugated aglucone forms in the systemic circulation after oral 

administration of their glycosides, either as plant products or as pure compounds. However, 

several studies have shown that glucosides, such as daidzin, genistin and quercetin, were not 

absorbed across Caco-2 cell monolayer (Walle et al. 1999; Walgren et al. 1998; Steensma et 

al. 1999). Kuo (1998) demonstrated that 14C-flavone was transported across Caco-2 

monolayer rapidly in both luminal-to-basolateral and basolaterol-to-luminal directions, 

indicating the aglucones of flavonoids were absorbable by isolated intestinal epithelial cells. 

Oitate et al. (1998) showed that apical-to-basolaterol transport of genistein across Caco-2 

monolayer was significantly greater than in the opposite direction. The transport could be 

inhibited by the presence of other flavonoids such as rutin and quercetin. The authors 

suggested that transport of genistein might be a carrier-mediated process, which might 

transport rutin and quercetin as well. Flavonoids could be not only transported but also 
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metabolized by intestinal epithelial cells. Using a Caco-2 cell culture and a perfused rat 

intestinal model, Liu and Hu (2002) found that the vectorial transport of genistin and 

apigetrin favored excretion by Caco-2 cells. In addition, 1 to 2% of total genistin and 

apigetrin applied in the apical chamber were metabolized to their aglucones by Caco-2 cells. 

In contrast, genistein and apigenin showed four times greater transport than their glucosides, 

and their absorptive transport was as same as the secretory transport in Caco-2 cell model. 

The glucosidic hydrolysis and glucuronide conjugation of flavonoids were also observed in a 

perfused rat intestine model system. Steensma et al. (1999) reported sulfate and glucuronide 

conjugation of genistein in Caco-2 cell model and rat perfused gut segments. Therefore, the 

authors suggested that intestinal disposition of these flavonoids might be a complex of 

absorption, metabolism and efflux processes besides gut microflora metabolism. 

Bioavailability and absorption data for saponins is scarce. Although Caco-2 cell 

model has been widely used to evaluate absorbability and pre-systemic metabolism of many 

nutrients and phytochemicals, no study has reportedly used this model to measure saponin 

absorbability. Chao et al. (1998) observed that 0.01 - 0.1% quillaja saponin DS-1 in the 

culture medium reduced transepithelial electric resistance of Caco-2 cell monolayer and 

increased permeability of mannitol and d-decapeptide without causing any detectable 

morphological changes of the monolayer. The integrity and viability of Caco-2 cell 

monolayer was recoverable after removing DS-1. This data suggested that saponins might 

have the ability to increase the permeability of Caco-2 cell monolayer while exhibiting only a 

low adverse effect on the epithelial viability and barrier function. Caution should be taken 

when we evaluate absorbability of saponins using Caco-2 cell model. The confluence of the 

cell monolayer should be carefully monitored before and after saponin treatment. 
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METABOLISM OF SOYASAPONINI BY HUMAN INTESTINAL 

MICROFLORA 

A paper to be submitted to the Journal of Agricultural and Food Chemistry 

Jiang Hu, Yan Zheng, Walter Hyde, Suzanne Hendrich, and Patricia A Murphy 

ABSTRACT 

The metabolism of soyasaponin I (3-0-[a-L-rhamnopyranosyl-j3-D-

galcictopyranosyl-P-D-glucuronopyranosyl]-olean-12-en-3fi, 22p, 24-triol) by human gut 

microorganisms was investigated in order to elucidate the metabolism of dietary 

soyasaponins in the human intestine. Fifteen healthy women aged 18 to 52 years consumed a 

soy-free diet for 5 days. Fresh stools were collected and incubated in a brain-heart-infusion 

media with 10 pmol soyasaponin I /g feces under anaerobic conditions at 37°C for 48 h. The 

disappearance of soyasaponin I in this in vitro fermentation system displayed an apparent 

first-order rate loss kinetics over 48 h. Two distinct soyasaponin I degradation phenotypes 

were observed among the subjects: rapid soyasaponin degraders with rate constant k - 0.24 ± 

-i -i 
0.04 h , and slow degraders with k = 0.07 ± 0.02 h . There were no significant differences 

in the subjects' body mass index, stool moisture, gut transit time and soy consumption 

frequency between the two degradation phenotypes. The subject distribution between two 

soyasaponin metabolic phenotypes was not significantly different between the two ethnic 

groups: the Asian subjects and the Caucasian subjects (P = 0.07). Two primary gut microbial 

metabolites of soyasaponin I produced in this fermentation system were soyasaponin IE (5-

O-fP-D-galactopyranosyl-P-D-glucuronopyranosylJ-olean-12-en-3p, 22p, 24-triol) and 
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soyasapogenol B (4-methoxyl-olean-l2-en-3f3, 22 p, 24-triol). Soyasaponin HI was generated 

during the first 24 h incubation and disappeared by 48 h. Soyasapogenol B appeared to be 

the final metabolic product during the 48 h anaerobic incubation. These results suggest that 

dietary soyasaponins can be metabolized by human intestinal microflora. The sugar moieties 

of soyasaponins appeared to be hydrolyzed sequentially to yield the smaller and more 

hydrophobic metabolites. 

Keywords: soyasaponins, soyasaponin metabolism, intestinal microflora, phytochemicals 

INTRODUCTION 

Soyasaponins are a group of the secondary metabolites found in variety of 

leguminous plants (Okubo et al. 1996). The basic structure of soyasaponins is a triterpenoid 

aglycone attached to one or two polysaccharide chains. Significant amounts of soyasaponins 

are found in soybeans and soy products at concentrations between 0.5 to 114 jamol/g (Hu et 

al. 2002). The potential health-promoting properties of soyasaponins have been 

demonstrated in many studies. Soyasaponins have been considered as the main contributors 

to the cholesterol-lowering effect of soy consumption (Oakenfull et al. 1990; Potter et al. 

1995). This effect might be achieved by soyasaponins binding to bile acids and cholesterol 

in the intestine to reduce their reabsorption (Oakenfull 2001). Soyasaponins showed the anti-

carcinogenic activity against various tumors or tumor cell lines (Rao et al. 1995; Konoshima 

et al. 1996; Koraktar et al. 1997; Oh and Sung 2001). Soyasaponins have also been shown to 

possess hepato-protective and anti-viral activities (Miyao et al. 1998; Kinjo et al. 1998; 

Hayashi et al. 1997). 
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It is important to understand the pre-systemic metabolism and absorption of 

soyasaponins because soyasaponins are generally taken by humans through soy foods. The 

forms of soyasaponins that are most likely to be involved in the potential health effects of 

these compounds are not known. Most of the studies investigating the biological effects of 

soyasaponin were limited to in vitro experiments and a few animal studies. Data on the 

bioavailability and absorption of saponins is scarce. Gestetner et al. (1968) reported that 

ingested soyasaponins were hydrolyzed to aglycones by non-specific glycosidases of cecal 

microflora in chicks, rats and mice. Karikura et al. (1990) observed that ginseng saponins 

were decomposed into the smaller molecules in the rats intestine via hydrolysis of the sugar 

moieties. However, no study has reported the fate of soyasaponins nor explored their 

possible metabolites in human intestine to date. 

The present study was designed to investigate whether soyasaponins were 

metabolized by human intestinal microflora, to identify the possible gut metabolites of 

soyasaponins. Soyasaponin I (Scheme 1), as a representative of soyasaponins, was tested in 

the study because it is a dominant form of soyasaponins in the heat-treated soy products. 

Individual variability in soyasaponin metabolism by gut microflora was also evaluated and 

soyasaponin catabolic phenotype among the human subjects was characterized. Gut 

microorganism populations and bacterial enzyme activity have been known to be affected by 

factors such as genetic background, dietary habits and physical activity (Rowland et al. 

1970). Therefore, the influence of individual status, such as body composition, ethnicity, gut 

transit time and soy consumption on gut microbial metabolism of soyasaponins, was 

examined as well. The information obtained in this study will help to predict soyasaponin 
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bioavailability in humans and provide evidence of the presence of soyasaponin metabolites in 

the human intestine. 

MATERIALS & METHODS 

Preparation of soyasaponin I, III and soyasapogenol B standards 

Soyasaponin I was isolated from soy germ donated by Schouton USA, Inc. using the 

method of Hu et al. (2002). Soyasaponin HI was produced by hydrolying 100 mg of 

soyasaponin I in 1 TV hydrochloric acid-dioxane (1:1, v/v) by refluxing for 1 h. The reaction 

mixture was neutralized by 10 TV sodium hydroxide and desalted with a high capacity C18 

SPE column (Alltech Associates Inc., Deerfield, IL) sequentially eluting with water and 

methanol. Crude soyasaponin HI was obtained in the methanol fraction. Forty-three mg of 

soyasaponin HI were obtained by further purification with a semi-preparative HPLC system 

as previously described by Hu et al. (2002). Soyasapogenol B was produced by hydrolyzing 

100 mg of crude group B soyasaponins generously provided by Dr. Mark Berhow (National 

Center for Agricultural Utilization Research, USDA) in 3 N hydrochloric acid by refluxing 

for 3 h. The reaction mixture was neutralized, desalted as described above and then purified 

with the semi-preparative HPLC system using 70 % aqueous acetonitrile with 1 mM 

ammonia acetate at flow rate 2 mL/min. Total 24 mg of soyasapogenol B was yield as white 

amorphous powder. 

The structural identity of the purified soyasaponin standards was confirmed by 

electrospray ionized (ESI) mass spectroscopy and !H-, 13C- NMR analyses. ESI spectra were 

acquired in the positive Q1MS mode on a Finnigan TSQ 700 triple quadrupole mass 

spectrometer (Finnigan MAT, San Jose, CA) fitted with a Finnigan ESI interface. The ESI 
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spectra of individual compounds gave a primary ion peak at m/z 944 [M+H]+ for 

soyasaponin I, m/z 891 [M+Na]+ for soyasaponin HI, and m/z 459 [M+H]+ for 

soyasapogenol B. !H NMR and 13C Attached Proton Test (APT) NMR spectra were acquired 

on a Varian VXR-300 spectrometer (Varian Inc., Palo Alto, CA). The samples were 

dissolved in chloroform-de or dimethyl sulfoxide-de (Cambridge Isotope Laboratories, Inc., 

Andover, MA) with tetramethylsilane (Cambridge Isotope Laboratories, Inc., Andover, MA) 

as an internal standard. The spectra obtained for these purified compounds were in good 

agreement with those reported by Baxter (1990) and Kudou et al. (1993). 

Anaerobic incubation of soyasaponin I with human fecal microflora 

The subjects were 15 healthy women recruited from Iowa State University and the 

surrounding community. They were aged 18 to 52 years, with body mass index (BMI) of 

23.0 ± 5.8 kg/m2, and without using any medication for 3 months prior to and during the 

study. The subjects included ten Caucasians, four Chinese and one Indian. The study 

protocol was reviewed and approved by Iowa State University Human Subjects in Research 

Committee in 2001. 

Brain-heart infusion media (BHI) used in the study was prepared with the following 

composition according to Zheng (2000): 100 mL BHI media contained 3.7 g of brain-heart 

infusion (DIFCO Laboratories, Detroit, MI), 0.4% sodium bicarbonate, 0.025% cysteine 

sulfide and 1 ppm resazurin (Sigma, St. Louis, MO). Soyasaponin I was added to BHI media 

to give a concentration of 1.6 ^moles/mL. All media was saturated with CO2 and 

autoclaved. 
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The subjects were instructed to avoid soyasaponin-containing foods listed in 

Appendix 1 for 4 d as wash-out period. One fresh stool from each subject was collected into 

sterile zip-lock bags at the end of the wash-out period. The stools were manually 

homogenized in the sealed bag. Ten grams of the feces was added to 25 mL sterilized BHI 

media and mixed by vortexing. A 10.0 mL of fecal suspension was inoculated into 25.0 mL 

BHI media containing soyasaponin I to give an initial concentration of 10 nmoles 

soyasaponin I /g feces. The mixture was incubated under anaerobic condition at 37°C for 48 

h. Parallel incubation was run without soyasaponin I present in the media for each subject as 

a negative control. Two types of positive controls were run as follow: BHI media containing 

the same initial concentration of soyasaponin I was cultured without fecal material; and BHI 

media containing soyasaponin I was cultured with the autoclaved fecal suspension. Aliquots 

were taken at 0, 4, 8,12, 24, 36 and 48 h intervals from the cultures and immediately frozen 

at-20 °C. 

The samples were thawed to room temperature (RT) before soyasaponin analysis. A 

2.0 mL aliquot of each sample was dispersed in 8 mL methanol in a 15-mL polypropylene 

centrifuge tube and shaken at RT for 30 min. The suspension was centrifuged at 3000 rpm 

for 10 min. The supernatant was removed and the precipitate was resuspended in 10 mL 

methanol. After vortexing for 15 min, the sample suspension was centrifuged again. After 

the second centrifugation, the two supematants were combined and evaporated to dryness 

under reduced pressure at RT. The residue was resuspended in 5 mL of 20% methanol and 

loaded onto a pre-conditioned Sep-Pak cartridge (classic short-body C,g, Waters Corp. 

Milford, MA). The cartridge was washed with 5 mL of 5% methanol. Soyasaponin was then 

eluted with 2.0 mL HPLC grade methanol. The extract was vortexed and subject to thin 
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layer chromatography (TLC) and high performance liquid chromatography (HPLC) analysis. 

All the samples were extracted and analyzed in duplicate. The logarithm of remaining 

soyasaponin I concentration was plotted versus incubation time. The reaction rate loss 

constant k and half-life ti/2, were calculated according to Atkins and Jones (1997). 

TLC analyses were performed on the silica gel LK6F plates (Whatman, Hillsboro, 

OR). Each set of the incubation samples per subject was analyzed using two different 

solvent conditions: one was developed with butanol-ethanol-ammonia (5:5:4, v/v); the other 

was developed with hexane-ethyl acetate (2:1, v/v). Soyasaponins were detected by spraying 

acetic acid-sulfuric acid-anisaldehyde (100:2:1, v/v) and heating at 120 °C for 10 min. 

Soyasaponin I concentration and metabolite formation was determined by HPLC 

using the method previously reported (Hu et al. 2002). The mobile phases were 0.05% 

trifluoroacetic acid in water (solvent A) and acetonitrile (solvent B). The gradient elution 

was carried out as: solvent B held at 37% for 3 min, then increased from 37 to 40% in 12 

min, then solvent B increased to 48% in 25 min, and finally solvent B increased to 100% in 1 

min and remained at 100% for 2 min. The gradient program recycled back to the initial state 

of 37% solvent B in 5 min. The column temperature was 30 °C. The injection volume was 50 

IuL. The flow rate was 1 mL/min and the UV absorbance was monitored from 190 to 350 

nm. This HPLC program was designated as program 1. 

In order to monitor the formation of more hydrophobic metabolites in the culture, the 

samples were analyzed with the same HPLC system using a different gradient program, 

designated as program 2: solvent B increased from 73 to 100% linearly in 35 min, then 

solvent B recycled back to 73% in 4 min. 
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Identification of soyasaponin I metabolites 

The metabolites of soyasaponin I formed in the culture were isolated as described 

below. Five grams of fresh collected human feces were anaerobically incubated in the 50 mL 

BHI media containing 50 mg of soyasaponin I at 37 °C for 48 h. Two 25 mL aliquots were 

taken at 12 and 48 h. Each sample was fractionated with a high capacity Clg SPE column by 

successively eluting with water, 30% aqueous methanol and 100% methanol. The eluted 

fractions containing metabolites were further separated on the preparative TLC (PK6F, 

Whatman, Hillsboro, OR) to give metabolites I (12 mg) and II (20 mg). The metabolites 

were analyzed by analytical HPLC and TLC. Their Rf values on TLC and retention times on 

HPLC were compared with the authentic standards. 

The fecal incubation samples at each time point from the selected subjects were 

analyzed by LC - Atmospheric Pressure Chemical Ionization (ApCI) - MS to further confirm 

the chemical identity of the metabolites. The analyses were conducted on a Hewlett Packard 

HPLC system (Agilent Technologies, Wilmington, DE) coupled with a triple quadrupole LC-

MS-MS mass spectrometer (VG Biotech). Sample separation was carried out under the same 

HPLC gradient programs as described above except the flow rate was 0.525 mL/min. The 

injection volume ranged from 5 to 20 pL depending on the concentration of the analytes in 

the solution. The effluent was delivered to the electrospray source configured with a corona 

discharge pin. Nitrogen gas was used as nebulizing and auxiliary gas for the mass 

spectrometer. The parameters applied to MS were: corona discharge voltage 3 kV; cone 

voltage 30 V; ApCI probe temperature 350 °C; source temperature 120 °C; scan time 2 sec 

and interscan time 0.1 sec. The full scan mass spectra over m/z range of 200 to 1100 amu 

were acquired on the eluted analytes. Before analysis, the mass spectrometer was tuned and 
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calibrated for the range of m/z 200 to 1100. The soyasaponin standards were dissolved in 

methanol and injected to obtain the authentic mass spectra prior to sample analysis. 

Statistical analysis 

All results were reported as mean ± SD. Statistical analyses were performed with 

SAS system (Version 8.1, SAS Institute Inc., Cary, NC). The kinetics of soyasaponin I 

metabolism was analyzed by general linear regression. The phenotypic pattern in human 

subjects was identified by average linkage cluster analysis (Johnson and Wichem 2002). 

General linear model was used to analyze the differences in BMI, stool moisture, gut transit 

time and soy consumption frequency between two soyasaponin degradation phenotypes. The 

Chi-square test was performed to determine the difference in ethnicity distribution between 

two soyasaponin degradation phenotypes. Statistical significance was set at a = 0.05 for all 

the analyses. 

RESULTS AND DISCUSSION 

The LC-MS chromatograms of standard soyasaponin I (3-0-[a-L-rhamnopyranosyl-

|3-D-galactopyranosyl-P-D-glucuronopyranosyl]-olean-12-en-3 (3, 22 P, 24-triol), soyasaponin 

m (3-O-[(3-D-galactopyranosyl-P-D-glucuronopyranosyl]-olean-12-en-3p, 22p, 24-triol) and 

soyasapogenol B (4-methoxyl-olean-12-en-3P, 22p, 24-triol) are shown in Figure 1 (A, B 

and C). Their ESI mass spectra and NMR data described in Material and Methods section 

were in good agreement with those reported by Baxter (1990) and Kudou et al. (1993). The 

mass spectra of these standards by LC-ApCI-Mass spectrometer are shown in Figure 2. 
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Their retention times, Rf values and fragmentation pattern on ApCI mass spectrometer are 

summarized in Table 1. 

The metabolism of soyasaponin I by intestinal microflora was examined using an in 

vitro static fecal fermentation model. The TLC profile for soyasaponin I incubation over 48 

h showed that soyasaponin I gradually disappeared and two major metabolites with higher Rf 

values appeared in the culture over 48 h (Figure 3). This indicates that soyasaponin I was 

converted to more hydrophobic metabolites I and H. Metabolite II appeared to be the 

primary product in the culture after 24 h incubation. Disappearance of soyasaponin I was not 

observed in the culture inoculated with autoclaved fecal material or without fecal material 

(Figure 4), indicating that degradation of soyasaponin I was caused by the viable fecal 

microorganisms and was probably enzymatic in nature. 

The HPLC chromatograms of fecal culture at 12 and 48 h are shown in Figure ID and 

IE, respectively. Metabolite I was detected along with soyasaponin I using the gradient 

program 1. The retention time of soyasaponin I was 25.9 min on HPLC, Rf value of 0.60 on 

TLC when using butanol-ethanol-ammonia solvent system. Metabolite I showed a retention 

time of 29.8 min on HPLC and Rf value of 0.63 on TLC. The scanned mass spectrum 

showed peaks at m/z 797.3 [M+H]+, 599.4 [M-rhm-gal-2H20+H]+, 441.3 [aglycone-OH]+, 

423.3 [aglycone-OH-H2()]+, and 405.3 [aglycone-OH -H20]\ Metabolite II was detected on 

HPLC using gradient program 2. It showed a retention time of 27.4 min on HPLC, and Rf 

value of 0.43 on TLC when using the hexane-ethyl acetate solvent system. The scanned 

ApCI mass spectrum of metabolite II showed the peaks at m/z 441.3 [aglycone-OH]^, 423.3 

[aglycone-OH-H^O]\ and 405 [aglycone-OH -H2O]. The HPLC and TLC chromatographic 
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data with the MS spectra of metabolites I and II matched those of soyasaponin HI and 

soyasapogenol B, respectively. 

These results suggest that the main metabolic pathway of soyasaponin I is the 

hydrolysis of terminal rhaminose off the sugar chain of soyasaponin I to produce 

soyasaponin HI, then further hydrolysis of remaining sugars to yield soyasapogenol B. 

However, soyasapogenol B-monoglucuronide, one of the hypothesized metabolites of 

soyasaponin I, was not observed during incubation in our study. It could be explained by the 

higher gut microbial glucuronidase activity than rhaminosidase activity (Jang and Kim 1996). 

The hydrolysis of glucuronic acid off the aglycones might occur so quickly that 

soyasapogenol B-monoglucuronide might not be present long enough to be detected. Based 

on these data, it is reasonable to infer that other individual soyasaponins could be 

metabolized by gut microbes similarly, i.e. the terminal sugars could be cleaved off stepwise 

and the aglycones with structural characteristics of each soyasaponin would be produced 

eventually. 

The metabolism of saponins by microbes has been reported. Makkar et al. (1997) 

demonstrated that quillaja triterpenoid saponins were degraded when incubated with cattle 

rumen liquor in vitro and implied their apparent metabolism by rumen microbes. Gestetner 

et al. (1968) incubated the content of cecum and colon of rats, chicks and mice with 

soyasaponins in vitro and detected both soyasaponins and soyasapogenols in the culture after 

3 h incubation. However, they did not report whether any intermediate decomposition 

products of soyasaponins were detected. Hasegawa et al. (1996 and 1997) reported the 

metabolism of ginseng saponins by human fecal flora under anaerobic condition. They 

demonstrated that ginsenosides were converted into smaller molecules in the reaction 
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proceeding stepwise via cleavage of terminal sugars. Our results demonstrate that human 

intestinal microflora have the ability to metabolize soyasaponins as well. Gestetner et al. 

(1968) showed that the non-specific glycosidases purified from rat cecal microflora were able 

to liberate glucose, galactose, arabinose, rhamnose and glucuronic acid from soyasaponins 

during incubation. These data indicate that mammalian gut microbial enzymes have the 

ability to hydrolyze various soyasaponin glycosidic bonds. Human intestinal bacteria 

especially Lactobacilli, Bacteroides and Bifidobacteria species, generally possess 

glycosidase and (3-glucuronidase activities (Rowland et al. 1970; Hawksworth et al. 1971). 

a-L-Rhamnosidase was reportedly produced by some strains of human intestinal Bacteroides 

(Bokkenheuser et al. 1987; Jang and Kim 1996). These bacterial enzymes might play a 

major role in liberating the aglycones from sugar-conjugated soyasaponins in the human gut. 

The average length of time during which food residue stays in the large intestine is about 24 

h or longer. Microbes in the large bowel would have sufficient time to interact with and 

hydrolyze soyasaponins. Further study will be needed to identify the bacterial species in the 

human intestinal tract that metabolize soyasaponins. 

In our in vitro incubation study, soyasaponin III and soyasapogenol B were identified 

as the major microbial metabolites of soyasaponin I, implying their possible existence in the 

human gut. However, only a few studies investigated the biological activity of these 

soyasaponin metabolites to date. It has been known that the variety and the number of sugars 

attached to soyasapogenols have profound impact on their activity. Ikeda et al. (1998) found 

that soyasaponins with a disaccharide group (soyasaponin HI and IV) were more potent in 

hepato-protective activity against immunologically-induced damaged than those with a 

trisaccharide group (soyasaponin I and H) and soyasapogenol B in the primary cultured rat 
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hepatocytes. Berhow et al. (2000) demonstrated that soyasapogenol B at non-cytotoxic 

levels was more potent than its various glycosides in suppression of 2-

acetoxyacetylaminofluorene induced genotoxicity in Chinese Hamster Ovary cells. 

Rowlands et al. (2002) showed that soyasapogenol B inhibited the growth of human breast 

cancer cells in vitro. Therefore, the bioavailability and potential biological activities of these 

soyasaponin metabolites deserve further characterization due to their probable presence in 

the human lower intestinal tract. 

The metabolism of soyasaponin I showed a biphasic pattern during 48 h incubation in 

the in vitro culture model (Figure 5). No significant degradation of soyasaponin I was 

observed during the first 4 h of incubation. Soyasaponin I content significantly decreased 

from 4 to 48 h in the culture system. The absence of soyasaponin I metabolism at the early 

stage of incubation may be because the microorganisms need time to adapt to the culture 

environment before they produce sufficient amount of enzymes to metabolize soyasaponins. 

Soyasaponin m was produced in the fecal incubations for 13 out of 15 subjects. 

Soyasapogenol B was produced in the fecal incubations for all the subjects. 

The rate loss of soyasaponin I versus incubation time gave a linear relationship for all 

the subjects (Figure 6), indicating that disappearance of soyasaponin I follows an apparent 

first-order kinetics. The disappearance of soyasaponin I in the presence of human gut 

microorganisms varied among subjects. The average rate loss constant was 0.15 ± 0.10 h ' 

and half-lives t]/2 of soyasaponin I in the culture ranged from 2.2 to 19.1 h among the 

subjects. Two distinct degradation phenotypes were observed among the subjects according 

to the disappearance rate constants (Figure 5). The rate constants and half-lives of the two 

phenotypic groups were significantly different (P < 0.05): rapid soyasaponin degraders (n=7) 
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having a rate constant k = 0.24 ± 0.04 h and t1/2 = 3.16 ± 0.62 h; slow soyasaponin degraders 

(n=8) having k = 0.07 ± 0.02 h 'and t1/2= 11.15 ± 4.34 h. The data demonstrate that the 

ability to metabolize soyasaponins by the gut microbes varied among our subjects and two 

soyasaponin metabolic phenotypes were present. If the ability to metabolize soyasaponins in 

the gut is a stable characteristic in humans, enhanced bioavailability and bioactivity of 

soyasaponins might be expected among the subjects exhibiting relatively longer soyasaponin 

half-life in the intestinal tract, whereas the subjects metabolizing soyasaponins rapidly would 

more likely experience effects of the metabolites. 

The differences in the gut microflora populations and bacterial enzyme activities 

could lead to different microbial metabolism of soyasaponins. Our results demonstrate two 

distinguishable fecal soyasaponin metabolic phenotypes among our subjects. It might be 

because the two groups of subjects might have different gut microflora population and/or 

enzyme activities. There are many factors that influence gut microflora population and fecal 

enzyme activities, such as genetic background of individuals, dietary factors, physical 

activities and gut peristalsis (Rowland et al. 1988). Therefore, we examined the relationship 

of body mass index, stool moisture, gut transit time and soy consumption frequency with the 

ability of the subjects to metabolize soyasaponins by their gut microbes. The subjects' BMI 

ranged from 18.1 to 30.4 kg/m2. The stool moisture was in a range of 47.2 to 78.3%. The 

gut transit time ranged from 38 to 168 h. There was no significant difference in body mass 

indices, gut transit time and stool moistures between two soyasaponin metabolic phenotypes 

(Table 2). According to their self-reported soy consumption, 5 subjects consumed soy foods 

more than once per week, 5 subjects consumed soy foods more than once a month but less 
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than once per week, and 5 consumed soy less than once a month or none. Soy consumption 

frequencies did not significantly affect soyasaponin metabolic rate among the subjects. 

In our study, the subjects could be grouped into two ethnic populations: 5 Eastern 

Asians including 4 Chinese and 1 Indian, and 10 Caucasians. The distribution of subjects 

between two soyasaponin metabolic phenotypes was not significantly different between these 

two ethnic groups (P = 0.07). The Asian subjects showed a slightly higher soyasaponin I 

degradation rate with constant k = 0.20 ± 0.1 h"1 than Caucasian subjects with the rate 

constant k = 0.13 ± 0.1 h"1, but the difference was not statistically significant (P = 0.18). In 

our study, all Asian subjects were non-immigrants who came from eastern Asia and 

maintained their traditional diet when living in the United States. The Caucasian subjects 

were Americans who had a typical western diet. All the subjects in this study were 

omnivores. Zheng et al. (2001) reported that the subjects from eastern Asia who maintained 

their traditional diet apparently consumed more red meat and cholesterol than Caucasian 

subjects in their study. The subjects in our study were recruited from similar source 

compared to Zheng's study. Reddy et al. (1973) found that the total anaerobic microflora 

such as Bacteroides, Bifidobacteria, Peptococci and Lactobacilli were significant higher in 

the feces after the subjects were shifted from non-meat diet to high-meat diet. These strains 

of bacteria have been found to possess glycosidase and/or p-glucuronidase activities 

(Rowland et al. 1970). High meat diets have been associated with decreased fecal bacterial 

P-glycosidase activity and increased enzyme activities including P-glucuronidase, 

nitroreductase and azo-reductase (Reddy et al. 1974; Goldin et al. 1978). Therefore, we 

expected that the Asian subjects would have higher soyasaponin degradation rate than 

Caucasians since the diet high in red meat and cholesterol consumed by the Asian subjects 
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might induce higher ^-glucuronidase activities in their gut so that soyasaponins were 

metabolized to their aglycones more rapidly. No significant difference in soyasaponin 

degradation rate we observed in this study could be due to the small sample size that limited 

statistical power of the analysis. In order to further elucidate the influence of ethnic and 

dietary factors on soyasaponin metabolism, the study with larger sample size will be 

necessary. 

Our present study may provide insight in the role of gut microflora on soyasaponin 

bioavailability and biological potency. The potential of soyasaponins to lower blood 

cholesterol has been proposed. Soyasaponins could form insoluble complexes with 

cholesterol and interfere with enterohepatic circulation of bile acids by forming mixed 

micelles, and inhibit the intestinal absorption of endogenous and exogenous cholesterol 

(Oakenfull et al. 1990). Soyasponins have been shown anticarcinogenic effects on colon 

cancer in animal model (Koratkar et al. 1997). This colon cancer inhibiting activity of 

soyasaponins may be contributed by their antimutagenic, cytotoxic and differentiation-

inductive effects on cancer cells (Sung et al. 1995; Berhow et al. 2000; Oh & Sung 2001). In 

addition, the interaction between soyasaponins and bile acids to reduce the formation of 

secondary bile acids in the gut might also contribute to soyasaponin's colon cancer 

suppressing activity. Thus, slow soyasaponin degraders would be able to retain original 

soyasaponins longer in the gut to interact with cholesterol and bile acids, therefore have 

greater cholesterol-lowering and colon cancer inhibiting effects from ingested soyasaponins. 

Although the role of soyasapogenols in the health beneficial effects of soyasaponins is 

unknown, rapid soyasaponin degraders might have higher concentrations of soyasapogenols 
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in the gut, thus experience a greater bioavailability and impact from the soyasaponin 

aglycones. 

The data from this study support that soyasaponin I can be metabolized by human gut 

microorganisms to the molecules with fewer or no sugars attached to the aglycone. The 

reaction may be enzymatic in nature. It is reasonable to infer that other forms of 

soyasaponins may be metabolized in the gut in the same manner. Two distinguishable 

soyasaponin metabolic phenotypes, slow soyasaponin degraders and rapid soyasaponin 

degraders, were observed among human subjects in our study, implying that different people 

might experience different spectrum of biological effects from soyasaponin ingestion. 

Individual variation in soyasaponin metabolism by gut micrflora may be present in humans. 

This variation might be due to the difference in the gut microflora population and/or bacterial 

enzyme activity, which might be affected by the subjects' genetic background, dietary habits 

and gut mobility. It would be of importance to further characterize the factors that influence 

individual ability to metabolize soyasaponins in the gut. In addition, the study on the 

bioavailability and biological activities of soyasaponins and their gut metabolites would be 

essential to evaluate the health-promoting role of dietary soyasaponins in the future. 
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Legends to the Figures: 

Scheme 1. Structures of soyasaponin I and its metabolites. 

Figure 1. Ion chromatograms of soyasaponin I (A), soyasaponin HI (B) and soyasapogenol B 

(C) standards with a positive mode ApCI- MS detection. The chromatogram of 12 and 48 h 

fecal incubation extracts from one subject are shown in D and E, respectively. 

Figure 2. Positive mode ApCI mass spectra of soyasaponin I (A), soyasaponin HI (B) and 

soyasapogenol B (C). 

Figure 3. Silica TLC profile of soyasaponin I degradation in the fecal fermentation system. 

A 10 |o,L sample from each fecal extract was spotted on the plate. The plate was developed 

with butanol-ethanol-ammonia hydroxide (5:5:4). 

Figure 4. Comparison of in vitro metabolism of soyasaponin I in fecal fermentation system 

among different experimental treatments. Each bar represents the value of mean ± SD of 

three replicates. 

Figure 5. In vitro metabolism of soyasaponin I in fecal fermentation system measured by 

HPLC. Disappearance of soyasaponin I and appearance of its metabolites I and II was 

monitored at UV 205 nm. Each point represents the value of mean ± SD of three replicates. 

Figure 6. Rate loss of soyasaponin I versus incubation time from all the subjects (n = 15). 

Different symbols represent different subjects. 
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Table 1. TLC, HPLC and mass spectral data of soyasaponin I, III and soyasapogenol B 

Molecular 
weight * 

TLC 
Rf 

HPLC 
retention 
time 

ApCI-Mass Spec 
(positive mode) 

Soyasaponin I 
C^HgoOig 

944 0.60 (butanol-
ethanol-
ammonia) 

25.9 min by 
program 1 

943.3 [M+H]+, 797.4 [M-rhm+H]+, 
599.4 [M-glc-gal-2H20+H]+, 441.3 
[aglycone-OH]+, 423.4 [aglycone-OH-
H2Û]+, 405 [aglycone-OH -H20]+on 
APcI 

Soyasaponin III 
C42H68O14 

796 0.63 (butanol-
ethanol-
ammonia) 

29.9 min by 
program 1 

797.3 [M+H]+, 599.4 [M-rhm-gal-
2H20+H]+, 441.3 [aglycone-OH]+, 
423.3 [aglycone-OH-H20]+, 405.3 
[aglycone-OH -H20]+on APcI 

SoyasapogenolB 
C30H50O3 

458 0.43 
(hexane: ethyl 
acetate) 

27.2 min by 
program 2 

441.3 [aglycone-OH]^, 423.3 
[aglycone-OH-HaO]"1", 405.4 
[aglycone-OH -H20]+on APcI 

* The molecular weight is calculated value based on the molecule formula. 
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Table 2. Comparison of body mass index (BMI), gut transit time (GGT), stool moistures, ethnicity distribution 
and rate loss of soyasaponin I between two soyasaponin metabolic phenotypes 

Rate Half-life BMI GGT Stool Ethnicity 
Phenotype constant (h) (kg/m2) (h) moisture distribution 

(h1) (%) (Asian/Caucasian) 

Slow (n = 8) 0.07 ± 0.02' 3.16 ±0.62= 24.4 ± 7.3 130.6 ±40.7 60.3 ± 5.3 1 / 7  
Rapid (n = 7) 0.24 ± 0.05b 11.15 ±4.34b 21.4 ±3.4 69.7 ± 38.2 65.3 ± 10.4 4 / 3  

Values are expressed as MEAN ± SD. The phenotype was distinguished by cluster analysis. The values in the same 
column with different superscripts are significantly different (P < 0.05). 
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Scheme 1 
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HUMAN INTESTINAL ABSORPTION AND BIOAVAILABILITY OF 

SOYASAPONIN I 

A paper to be submitted to the Journal of Nutrition 

Jiang Hu, Suzanne Hendrich, Patricia A. Murphy 

ABSTRACT 

A human study was conducted to evaluate dietary soyasaponin bioavailability in vivo. 

Eight healthy women ingested a single dose of concentrated soy extract containing 434 

Immoles of group B soyasaponins, the dominant forms of soyasaponins in soybeans. No 

soyasaponins or their gut metabolites were detected in 24 h urine. Soyasapogenol B, a major 

gut metabolites of group B soyasaponins, was detected at a total of 36.6 ± 16.9 jxmoles in a 

5-day feces collection but no group B soyasaponins was detected in feces. The data showed 

that ingested group B soyasaponins were metabolized to soyasapogenol B in the human 

intestine and excreted in the feces. A human colon cancer Caco-2 cell transfer model was 

used to evaluate absorbability and transport kinetics of soyasaponins at the cellular level. In 

the Caco-2 cell transfer model, 0.5 to 2.9% and 0.2 to 0.8% of soyasaponin I and 

soyasapogenol B dosed in the apical chamber, respectively, appeared at the basolateral side 

after 4 h incubation. The apical-to-basolateral absorption of soyasaponin I and 

soyasapogenol B was low with Papp of 0.9 to 3.6 x 10"6 cm/sec and 0.3 to 0.6 x 10"6 cm/sec, 

respectively. The transport rate and uptake of soyasaponin I by Caco-2 cells appeared to be 

saturable and concentration-independent. In contrast, soyasapogenol B accumulated in the 

Caco-2 cells in a concentration-dependent manner. The cytotoxicity assay showed that 
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soyasaponin I had no apparent cytotoxic effect on Caco-2 cells at concentrations up to 3 mM, 

while soyasapogenol B at 1 mM or higher concentration significantly reduced cell viability. 

Keywords: soyasaponin I, soyasapogenol B, Caco-2 cell monolayer 

INTRODUCTION 

Soyasaponins are one of the primary phytochemicals present in leguminous seeds 

(Price et al. 1986; Tsukamoto et al. 1995). The basic structure of soyasaponins is an 

oleanene-type triterpenoid aglycone with one or more polysaccharide chains attached, 

resulting in an amphiphilic nature of the molecules. Soyasaponins in soybean seeds and 

various soy products become the primary source of saponins from foods due to increasing 

soy consumption in Western countries. Significant amounts of soyasaponins are found in 

soybeans and soy products in a concentration range generally between 0.5 to 114 jj,mol/g (Hu 

et al. 2002). Soyasaponins have drawn great interest in recent years because these 

compounds have been demonstrated to possess multiple health-promoting properties, such as 

plasma cholesterol-lowering (Oakenfull et al. 1990; Potter et al. 1995), anticarcinogenic (Rao 

et al. 1995; Konoshima et al. 1996), hepatoprotective (Miyao et al. 1998; Kinjo et al. 1998), 

and anti-viral activities (Nakashima et al. 1989; Hayashi et al. 1997). Most of the studies 

investigating soyasaponin biological activities have been limited to in vitro experiments and 

a few animal studies. The relevance of these results to humans under in vivo conditions is 

not clear since little is known about how and to what extent dietary soyasaponins may enter 

systemic circulation after ingestion. 

There is very limited knowledge on the bioavailability of soyasaponins and soyasapogenols. 

Saponins have been assumed to be poorly absorbed in the intestine. It was thought that sugar 
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chains of saponins had to be hydrolyzed to liberate the aglycones by the bacterial enzymes in 

the lower intestine. The metabolism of soyasaponins by gut microbes was supported by the 

data from Gestetner et al. (1968) and Hu et al. (unpublished data 2003). They both 

demonstrated that soyasaponins could be metabolized by intestinal microflora to release 

sugars and aglycones as the metabolites in animals and humans. Soyasaponin aglycones, 

named soyasapogenols, have been shown to be more effective than its various glycosides in 

suppression of 2-acetoxyacetylaminofluorene induced genotoxicity on Chinese Hamster 

Ovary cells (CHO) (Berhow et al. 2002). Rowlands et al. (2002) suggested that 

soyasapogenol B had growth inhibitory effect on human breast cancer cells. 

Gestetner et al. (1968) examined soyasaponin absorption in rats, chickens and mice 

after oral dosing the animals. In their study, soyasapogenols and soyasaponins were 

determined qualitatively in the digestive tract and blood samples using TLC and hemolysis 

analysis. Neither soyasaponins nor soyasapogenols were found in the urine or blood of the 

animals, suggesting that dietary soyasaponins might not be absorbed in these animals. 

However, there is no direct evidence to demonstrate the absorbability and pharmacokinetics 

of soyasaponins in humans. 

The present study focused on investigating the bioavailability of soyasaponins and 

soyasapogenols in humans. Soyasaponin I (Scheme 1), as a representative of soyasaponins, 

was examined in the study because it is a principal form of soyasaponins in heat-treated soy 

products (Hu et al. 2002; Gu et al. 2002). Soyasapogenol B, a major gut microbial 

metabolite of soyasaponin I, was used to evaluate absorbability of soyasaponin aglycones. A 

single dose human feeding study was conducted to evaluate dietary soyasaponin 

bioavailability in vivo. The transepithelial absorbability and transport kinetics of these 
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compounds were evaluated using the human colon carcinoma Caco-2 cells, a well-

established human intestinal absorption model. The results obtained from this study will help 

to understand bioavailability of dietary soyasaponins and the absorption of their gut 

metabolites in humans, and to predict their potential beneficial effects. 

MATERIALS AND METHODS 

Preparation of soyasaponin I and soyasapogenol B standards. Soyasaponin I was 

isolated from soy germ supplied by Schouten USA, Inc following Hu's method (Hu et al. 

2002). Soyasapogenol B was produced by hydrolyzing 100 mg of group B soyasaponins in 3 

iV hydrochloric acid refluxing for 3 h. Group B soyasaponins mixture was generously 

provided by Dr. Mark Berhow (National Center for Agricultural Utilization Research, 

USD A). The reaction mixture was neutralized with 10 N sodium hydroxide and desalted 

with a high capacity C18 SPE column (Alltech Associates Inc., Deerfield, IL) with sequential 

elution of water and methanol. Crude soyasapogenol B was obtained in the methanol 

fraction. Twenty-four milligrams of soyasapogenol B was harvest after further purification 

with a semi-preparative HPLC system (Hu et al. 2002) using 70 % aqueous acetonitrile with 

1 mM ammonium acetate at a flow rate of 2 mL/min. The identity of purified soyasaponin 

standards was confirmed by electrospray ionized (ESI) mass spectroscopy. 

Human feeding study. The subjects were 8 healthy, non-smoking women aged 25 to 

34 years, with a body mass index of 21.0 ± 2.6 kg/m2, and without taking any medication for 

3 months prior to and during the study. The study protocol was reviewed and approved by 

the Iowa State University Human Subjects in Research Committee in 2001. Informed 
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consent was obtained from each subject before the experiment was initiated. The subjects 

were instructed to avoid soyasaponin-containing foods (Appendix 1) for 4 d as a soyasaponin 

wash-out period. At the end of the wash-out period, the subjects ingested 4 g of Prevastein® 

(Central Soya Company, Inc., Fort Wayne, IN), a concentrated soy extract containing 108.9 

pinoles group B soyasaponins /g, at breakfast after overnight fasting. The subjects took a 

carmine red dye marker capsule (500 mg, University of Iowa, Iowa City, I A) as the indicator 

of gut transit time with the soy dose. A baseline urine sample was collected from each 

subject before dosing, and a 24 h urine was collected after dosing. The total volume of urine 

was recorded for each subject. A 50.0 mL sample was taken from the urine and freeze-dried. 

All the stools were collected from the subjects from the time of dosing until the red dye 

marker disappeared in the feces. Fecal samples were freeze-dried. All the samples were 

stored at - 20 °C until analyzed. 

The freeze-dried urine sample was dissolved in 25 mL of 0.2 M sodium acetate buffer 

at pH 5.5 with or without 100 pL of (3-glucuronidase/sulfatase (86,900 units/mL, Sigma-

Aldrich, St. Louis, MO). The mixture was incubated at 37 °C for 8 h. The enzyme treatment 

was used to hydrolyze any possible UDP-conjugated or sulfate-conjugated forms of 

soyasaponin or soyasapogenols. After incubation, the sample was applied onto a pre

conditioned Sep-Pak cartridge (classic short-body C,%, Waters Corp. Milford, MA). The 

cartridge was washed with 5 mL of distilled water followed by 5 mL of 5% methanol. 

Soyasaponins were eluted with 2.0 mL HPLC grade methanol. The extract was vortexed and 

filtered through a 0.45 p.m PTFE filter (Alltech Associates Inc., Deerfield, IL) prior to thin 

layer chromatography (TLC) and high performance liquid chromatography (HPLC) analyses. 



www.manaraa.com

82 

Three grams of freeze-dried fecal sample was weighed and extracted with 100 mL of 

70% ethanol at room temperature (RT) for 2 h. The extract was filtered through Whatman 

No. 42 filter paper. The filtrate was evaporated to dryness at RT using a rotary evaporator at 

reduced pressure. The residue was suspended in 5 mL of 20% methanol and loaded onto a 

pre-conditioned Sep-Pak cartridge. The cartridge was washed with 5 mL of distilled water 

followed by 5 mL of 30% methanol. Soyasaponins were eluted with 3.0 mL HPLC grade 

methanol. The extract was vortexed and filtered through a 0.45 (j.m PTFE filter prior to TLC 

and HPLC analysis. All the urine and fecal samples collected were extracted and analyzed in 

duplicate. 

TLC analyses were performed on silica gel LK6F plates (Whatman, Hillsboro, OR). 

The urine and fecal samples for each subject were analyzed under two different conditions: 

one was developed with butanol-ethanol-ammonia (5:5:4, v/v); the other was developed with 

hexane-ethyl acetate (2:1, v/v). Soyasaponins were detected by spraying acetic acid-sulfuric 

acid-anisaldehyde (100:2:1, v/v) and heating at 120 °C for 10 min. Soyasaponins and 

soyasapogenol B displayed a blue-purple color on the TLC plate. 

Soyasaponin I concentration was determined by HPLC analysis as previously 

reported (Hu et al. 2002). The mobile phases were 0.05% trifluoroacetic acid in water 

(solvent A) and acetonitrile (solvent B). The gradient elution was carried out as follows: 

solvent B held at 37% for 3 min, then increased from 37 to 40% in 12 min, then solvent B 

increased to 48% in 25 min, and finally solvent B increased to 100% in 1 min and remained 

at 100% for 2 min. The gradient program recycled back to the initial state of 37% solvent B 

in 5 min. The column temperature was 30 °C. The injection volume was 50 pL. The flow 

rate was 1 mL/min, and the UV absorbance was monitored from 190 to 350 nm. 
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Soyasapogenol B concentration was measured with the same HPLC system using a different 

gradient program: solvent B increased from 73 to 100% linearly in 35 min, then solvent B 

recycled back to 73% in 4 min. 

Transepithelial absorption and transport kinetics of soyasaponin in the Caco-2 

cell model. Caco-2 cells were purchased at passage 18 from American Type Culture 

Collection (Rockville, MD). The experiments were conducted at passage 35-45. The cells 

were grown in Dulbecco's Modified Eagle Medium (DMEM, Sigma, St. Louis, MO) with 

16% fetal bovine serum (Sigma, St. Louis, MO), 1% non-essential amino acids (Gibco BRL, 

Grand Island, NY) and 1% antibiotic-antimyotic solution (Gibco BRL) at 37°C in an 

incubator with 5% CO% / 95% air. Cells were seeded on the collagen-coated 

polytetrafluroethylene membrane inserts (0.45 fo.m, 1 cm2 surface area) with a density of 5.5 

x 104/cm2 for the transport experiments. The inserts were fitted in 6-well bicameral 

chambers (Transwell-COL, 24 mm ID, Coming Costar Corp., Cambridge, MA) and cultured 

for 14 to 16 days until 95 to 100% confluence was reached and cells became well 

differentiated. Phenol red test (Garcia et al. 1996) was performed to measure cell monolayer 

integrity before and after the transport assay. A serum-free medium was used as the transport 

buffer to perform transport assay of soyasaponin across Caco-2 cell monolayer. The serum-

free medium contained 1% antibiotic-antimyotic solution, 4 mg/L hydrocortisone, 10 

mmol/L PIPES, 5 pig/L selenium, and 34 j_tg/L T3 in DMEM medium. 

Transepithelial transport was measured for soyasaponin I and soyasapogenol B at 

concentrations of 0.5, 1 and 3 mM. The transport assay for each compound at each 

concentration was done in triplicate. Soyasaponin I or soyasapogenol B was suspended in 

the transport buffer and sonicated for 30 s with a sonic demembrator (Fisher Scientific, 
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Pittsburgh, PA). Caco-2 monolayers grown on the membrane inserts were first rinsed with 2 

mL of Earl's Balanced Salt Solution (BBSS) buffer and then bathed in 2 mL of transport 

buffer at 37 °C for 15 min prior to the treatment. Then the apical buffer was replaced with 

1.5 mL of transport buffer containing the test compound. A 1.0 mL volume of transport 

buffer without the test compound was added to the basal chamber. The system was 

incubated at 37°C for 4 h. The samples were taken from the basal chamber at 30 min, 1, 2, 

and 4 h intervals. This was accomplished by replacing the basal chamber buffer with 1.0 mL 

of fresh transport buffer at each time point. Cumulative transport rates were then determined 

by summing the amount of the compound transported to the basal chamber from the discrete 

time points (Coghurn et al. 1991). At the end of experiment, the buffer in the apical chamber 

was collected to determine the remaining amount of the test compound. All the samples 

collected were stored at - 20 °C until analysis. 

The amount of test compound on the insert was measured as well to determine its 

cellular uptake. After the transport assay, the apical and basal chambers were rinsed 3 times 

with 1 mL of ice-cold BBSS buffer. The membrane inserts were then peeled off from the 

membrane holders and placed in 1.5 mL of ice-cold 0.5 M sodium hydroxide to solublize the 

cells. The cells were further lysed by sonicating with the sonic demembrator for 30 s (Au 

and Reddy 1999). The total protein content of cells on the inserts was determined using 

Lowry's method (Lowry et al. 1951) to ensure there was comparable numbers of cells on 

each insert used in the experiments. 

The contents of soyasaponin I or soyasapogenol B in the samples were determined as 

follows. The collected sample was thawed to RT. The sample from the basal chamber was 

directly loaded onto a preconditioned Sep-Pak cartridge (Light short-body Cig, Waters Corp. 
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soyasapogenol B was then eluted with 0.8 mL HPLC grade methanol. The sample from the 

apical chamber was loaded onto a larger size pre-conditioned Sep-Pak cartridge (Classic 

short-body C,g). Soyasaponin or soyasapogenol B was eluted with 2.0 mL HPLC grade 

methanol. The extract was vortexed and subjected to HPLC analysis. The defined 

permeability coefficients (Ptrans) were determined using the following equations (Artursson 

1990; Cogburn et al. 1991; Oitate et al. 2001): 

P app = AQ/(Atx60xAxCo) 

Ptrans — 1 /Papp ~ 1 /Pfilter 

where Papp and Pfjiter are the apparent permeability coefficients estimated by transport assay in 

the presence and absence of Caco-2 cells, respectively. AQ/At is the permeability rate 

constant (fimole/min), A is the surface area of the membrane (cm2), and Co is the initial 

concentration of the compound in the apical chamber (fimole/mL). All rate constants were 

obtained as the slopes of the regression line for receiving amount in the basal chambers 

versus time. The transport assay was done under sink conditions, i.e., experiment was done 

before > 10% of the compound had been transported to the basal chamber. 

The acute toxicity of soyasaponin I and soyasapogenol B to Caco-2 cells was 

evaluated at the concentrations used in the transport assay. Caco-2 cell monolayers were 

treated with the transport buffers containing soyasaponin I or soyasapogenol B as treatment 

groups. The control was treated with the transport buffer without test compounds. Each 

treatment was done in duplicate. After 4 h incubation, the insert was rinsed with 1.5 mL of 1 

M phosphate buffer. The cells were digested with 0.5 mL of trypsin-EDTA and suspended in 
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the serum-free medium. The viability of the harvested cells was determined with typan blue 

dye exclusion method (Butler and Dawson 1992). 

Statistical analysis. All data were expressed as mean ± SO. Statistical analyses 

were performed with SAS system (Version 8.1, SAS Institute Inc., Cary, NC). The transport 

kinetics of soyasaponin I and soyasapogenol B across the Caco-2 cell monolayer was 

analyzed by general linear regression. The differences in cell uptake and cytotoxicity of 

soyasaponin I and soyasapogenol B at different concentrations were compared using analysis 

of variance (ANOVA) followed by Tukey's multiple comparison test. The difference was 

considered to be significant when the P value was less than 0.05. 

RESULTS AND DISCUSSION 

In order to evaluate the bioavailability of dietary soyasaponins, we first conducted a 

human study with a single oral administration of soy concentrate. This single dose of soy 

concentrate contained 435.9 jamoles of total group B soyasaponins. The excretion of 

soyasaponins or their gut metabolites in the urine and feces was monitored after dosing, and 

the results are shown in Table 1. No group B soyasaponins or soyasapogenol B was detected 

in the 24 h urine regardless of whether or not the sample was treated with (3-

glucuronidase/sulfatase during sample extraction. Soyasapogenol B was detected in the 

collected feces, but soyasaponins were not found. The total amount of soyasapogenol B 

recovered in the feces was 36.3 ±3.6 pinoles (Mean ± SE). More than 65% of detected 

soyasapogenol B was excreted in 1 to 3 days after dosing. The total soyasapogenol B 

recovered from the feces was 8.4% of the total ingested group B soyasaponins on a mole 

basis. Variation in soyasapogenol B recovered from the feces was different among subjects, 
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especially during Day 0 and Day 1. Three of the subjects excreted a small amount of 

soyasapogenol B on Day 0, the day that soy dose was given. It is likely that the foods which 

the subjects consumed during wash-out period might contained soyasaponins but not been 

known to us. 

Gestetner et al. (1968) examined the fate of soyasaponins in different animal models. 

Neither soyasaponin nor soyasapogenol was detected in the blood after orally dosing the 

animals with soyasaponins, whereas soyasapogenols were recovered from the cecum and 

colon of the animals. Hu et al. (2003) observed that group B soyasaponins were converted 

into their aglycone by human intestinal microflora in vitro, suggesting that the aglycone of 

group B soyasaponins, soyasapogenol B, might be a potential gut metabolite of dietary 

soyasaponins in humans. Our data implies that ingested group B soyasaponins can be 

metabolized to soyasapogenol B in the human intestine in vivo. 

In this study, only 8.4% of ingested group B soyasaponins was recovered as their 

aglycone form, soyasapogenol B, in the feces. In addition, soyasaponins and soyasapogenol 

B were absent in the urine. In Gestetner's study, 60 to 65% of total ingested soyasaponins 

was recovered as the form of soyasapogenols in the collected feces of rats. The recovery in 

our study is much lower than their findings in animals. We propose two possibilities that 

might contribute to this phenomenon. One possibility is that soyasaponins might undergo 

biotransformation by gastrointestinal mucosa and the liver before entering the systemic 

circulation. Since no soyasaponins or soyasapogenol B was found in the urine treated with 

^-glucuronidase/sulfatase, soyasaponins or soyasapogenol B in vivo might be metabolized by 

phase I transformation enzymes, if it occurs, which would result in the alteration of the 

aglycone structure. The other possibility is that soyasaponins and soyasapogenol B might not 
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products and excreted in the feces. These degradation products would not have been 

recognized by the analytical methods we used. It would be valuable for the future work to 

have soyasaponins with a stable isotope labeled aglycone to trace the fate of ingested 

soyasaponins in animal models or humans. 

Very limited information is available on the bioavailability of other types of saponins. 

Glycyrrhizin, a triterpene saponin found in licorice, has been reported to be metabolized by 

human intestinal microflora into the aglycone, glycyrrhetinic acid (Kim et al. 2000). 

Glycyrrhetinic acid was absorbed and displayed an anti-inflammatory activity in mice 

(Horigome et al. 2001). Hasegawa et al. (1996) reported that metabolite I of ginseng 

saponins was detected in blood at a concentration of 0.2 pg/mL after an oral administration 

of 150 mg ginseng /kg body weight to a human subject. The original ginsenosides and their 

metabolites were detected in the blood and urine after single oral administration of lg 

ginsenosides /kg body weight in rats. However, the doses used in their study were so high 

compared to dietary levels that the permeability of intestinal mucosal cells might have been 

increased (Johnson et al. 1986). It is likely that the observed ginseng saponins and their 

metabolites in urine might be leaked from the intestinal tract instead of being absorbed by 

enterocytes. 

For comparison, the gastrointestinal absorption of soy sterol and soy stanols in 

humans is very low (Ostlund et al. 2000). After a single meal of 600 mg lecithin-emulsified 

soy stanols or sterols, the absorption of sitosterol, campesterol, sitostanol, and campestanol 

was only 0.51%, 2.2 %, 0.044% and 0.26%, respectively. Soyasaponins are larger molecules 

than these phytosterols but have a similar hydrophobicity. It is likely that soyasaponins 
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might have very low oral bioavailability that is similar to phytosterols. Klaassen and 

Rozman (1996) suggested that bioavailable substances should not only be absorbed, but also 

survive the first-pass effect, which refers to biotransformation by the gastrointestinal cells or 

the liver and excretion into the bile with or without prior biotransformation. Urinary and 

plasma recovery therefore serve as reasonable indicator for bioavailability. Soyasaponins or 

soyasapogenol B might not be truly bioavailable based on this definition. However, the 

health-protective effects of substances also depend on their active forms, which could be the 

parent compounds or their metabolites produced in vivo. Failing to observe the parent 

compounds in the urine after oral dosing may not necessarily indicate their limited health 

beneficial effects. More research needs to be done in order to understand the mechanism of 

pre-systemic metabolism and first-pass elimination of soyasaponins in humans. 

The absorbability and transport kinetics of soyasaponin I and soyasapogenol B were 

evaluated at the cellular level using a Caco-2 cell monolayer model to estimate their 

intestinal bioavailability. The concentrations used in this study were based on the dose of 

group B soyasaponins given in the human study above, i.e. 436 ^moles/person. Assuming 

soyasaponins and their gut microbial metabolite, soyasapogenol B, stayed in the lower 

intestine unabsorbed, and an average 150 to 300 g/day of stool, the resulting concentration of 

soyasaponins or soyasapogenol B would be 1.5 to 3 pmole/g feces. Thus, the concentration 

range of 0.5 to 3mM was used considering the reported toxicity of higher doses of 

soyasaponins to the cultured colon carcinoma cells (Sung et al. 1995). 

In our study, the total protein content of Caco-2 cell monolayers used in the 

experiment was 1210.9 ± 162.3 pg/insert. This suggests that the number of cells per insert 

was comparable among individual inserts used in the experiment. The integrity of Caco-2 
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cell monolayers was maintained well with confluence above 92% during the experiment. 

Chao et al. (1998) observed that 0.01 to 0.1% of quillaja saponin DS-1 in the culture medium 

increased the permeability of mannitol and d-decapeptide over Caco-2 cell monolayer 

without causing any detectable morphological changes of the monolayer. However, in our 

study, applying soyasaponin I and soyasapogenol B up to 0.3% (w/v) in the apical chamber 

apparently did not affect the monolayer confluence significantly. Our data suggest that 

soyasaponins might be less effective on disturbing the integrity of Caco-2 cell monolayer. 

This is also supported by Johnson's (1986) observation that soyasaponins were less capable 

of increasing the permeability of rat intestinal mucosal cells in vitro in comparison with 

gypsophylla saponins and saponaria saponins. 

The recoveries of soyasaponin I and soyasapogenol B were calculated based on the 

amount of compounds recovered in both the apical and basal chambers as well as the cell 

insert after the 4 h transport assay. The total recovery was 101.3 ± 3.7% and 76.7 ± 6.5% for 

soyasaponin I and soyasapogenol B, respectively. The recovery was significantly greater for 

the glycoside, soyasaponin I, than the aglycone, soyasapogenol B. Our sample extraction 

efficiencies for soyasaponin I and soyasapogenol B analyses were all above 92%. There are 

two possibilities that might explain the 25% loss of soyasapogenol B on its mass balance. It 

is possible that highly hydrophobic soyasapogenol B might be adsorbed to the surface of 

polystyrene chambers during the incubation. In our study, a consistent percentage of the 

recovery on soyasapogenol B was observed among the three different concentrations. With 

the same volume of solution in the chambers, the more concentrated the solution was, the 

more soyasapogenol B molecules would interact with the chamber side-wall and be adsorbed 

to its surface, provided that the surface area was not saturated at the highest concentration of 
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soyasapogenol B. Artursson (1990) demonstrated that the insert membrane made of 

cellulose esters adsorbed significant amounts of tested drugs compared to the polycarbonate 

membrane. This effect appeared to be more significant for the drugs with higher 

hydrophobicity. We are not aware of any evidence in the literature regarding the affinity of 

hydrophobic compounds to polystyrene culture wells. It would be important to understand 

the relationship of compound hydrophobicity with its affinity to the culture well surface in 

the future studies using cell culture models. Choosing the appropriate culture well, or pre-

treating the culture well surface to prevent adsorption of the compound of interest would be 

necessary to improve the recovery. Another possibility is that soyasapogenol B could be 

metabolized by Caco-2 cells during the incubation. However, this possibility dose not seem 

likely as our TLC and HPLC analysis of the samples collected from the apical and basal 

chambers and the cell inserts did not reveal any compound which seemed to have structural 

characteristics similar to soyasapogenol B. Further investigation is needed to clarify these 

possibilities. 

The apical-to-basolaterol permeability coefficients of soyasaponin I and 

soyasapogenol B are summarized in Table 2. Our observations demonstrated that 

soyasaponin I was transported across the Caco-2 monolayer with a range of Ptrans from 0.9 to 

3.6 x 10"6 cm/sec at the three concentrations. After 4 h incubation, 2.9 ± 1.2%, 0.9 ± 0.4%, 

and 0.5 ± 0.1% of soyasaponin I, at 0.5,1.0 and 3 mM, respectively, were received in the 

basal chambers. The calculated real permeability coefficients (Ptrans) for soyasaponin I were 

similar to its apparent permeability coefficients (Papp), indicating the transport of soyasaponin 

I across the Caco-2 monolayer was much less than its simple diffusion across the 

polycarbonate membrane. Hence, the Caco-2 monolayer acted as a barrier against free 
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diffusion of sosyasaponin I towards the basolateral side. Based on previous observations by 

Artursson and Karlsson (1991), examining the relationship between Papp values obtained 

from Caco-2 cell model and human in vivo oral absorption for a number of drugs, this range 

of permeability coefficients for soyasaponin I would imply some extent intestinal absorption 

in humans. For comparison, at 0.05 mM the apical-to-basolateral transcellular flux of 

glucose over Caco-2 monolayer had a Pappof 36.8 x 10"6 cm/sec, quecertin 5.8 x 10"6 cm/sec 

(Walgren et al. 1998), and genistein 20 x 10"6 cm/sec (Walle et al. 1999). The absorption of 

soyasaponin I might be less than those compounds in the human intestine. As indicated by 

To.i in the Table 2, it would take 11.4 h to transport 10% of 0.5 mM soyasaponin I from the 

lumen to basolateral side of the gut. 

The concentration-dependency of transport kinetics was examined as well in our 

study to characterize transport mechanisms. Our data showed that incubation up to 4 h gave 

a linear transport kinetics of soyasaponin I (Figure 1). The transport rate constants for 

soyasaponin I at different concentrations were not significantly different. The accumulated 

mass of soyasaponin I in the basal chambers was not significantly different after 4 h in spite 

of different concentrations in the apical chambers. This suggests that the apical-to-

basolateral transcellular transport of soyasaponin I might be saturable and concentration-

independent. We measured the accumulation of soyasaponin I in the cell monolayer as well 

to estimate the cellular uptake of soyasaponin I. The data are reported as the accumulated 

amount in nmoles/(j,g of protein, considering the variation in the numbers of cells on the 

inserts. As shown in Figure 2, the accumulation of 0.5 mM soyasaponin I in Caco-2 cells 

was lower than those of the two higher concentrations (P < 0.01), whereas it was not 

significantly different between 1 vaM and 3 mM concentrations. It indicates that, like a 
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funnel-shaped transport mechanism, the apical-to-basolateral transport of soyasaponin I 

might be controlled at the basolateral membrane, and the uptake of soyasaponin I by Caco-2 

cells could be saturable. In our study, the cell uptake of soyasaponin I at 0.5 mM was not 

saturated, but the output of soyasaponin I at the basolateral membrane had been saturated. At 

concentrations > 1 mM, the cell uptake at the apical membrane and output of soyasaponin I at 

the basolateral membrane were all saturated. Therefore, it was observed that the 

accumulation of soyasaponin I in the cells became constant at the two higher concentrations, 

and the apical-to-basolateral transport rate of soyasaponin I was not different at the 

concentration range of 0.5 to 3 mM. A concentration-dependent transport rate may be 

observed if the concentrations of soyasaponin I used in the study were lower than saturation 

point of basolateral output. These findings suggest that transport of soyasaponin I by Caco-2 

cells might involve a carrier-mediated mechanism. It is reasonable to infer that the 

absorption of soyasaponins in the intestine might be enhanced when the soyasaponin 

concentration increases within a very low range. The absorbed amount could be limited by 

the capacity of epithelial cells to uptake and transfer soyasaponins to basolateral side when 

high concentrations of soyasaponins are present in the gut. 

Our observation showed that the permeability of soyasapogenol B was significantly 

lower than that of soyasaponin I (P < 0.05) regardless of the concentrations (Table 2). After 

4 h incubation, only 0.2 to 0.8% of the total soyasapogenol B was transported to the basal 

chambers. Such a low apical-to-basolateral transport of soyasapogenol B was unexpected 

because we hypothesized that soyasapogenol B would be more absorbable since it is a 

smaller and more hydrophobic molecule compared to soyasaponin I. However, after 

adjusting the apparent permeability coefficients Papp with the permeability coefficients Pf,iter 
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for polycarbonate membranes in the absence of Caco-2 cells, we found that, unlike 

soyasaponin I, the real permeability coefficients Ptrans of soyasapogenol B were significantly 

different from their apparent permeability and near zero. After carefully examining the 

diffusion kinetics of soyasapogenol B across the polycarbonate membrane filter, we found 

that only 0.1 to 0.4% of soyasapogenol B diffused through the membrane over 4 h. In 

contrast, about 60 to 96% of soyasaponin I passed through the membrane filter in the absence 

of Caco-2 cells. Therefore, the lack of absorption of soyasapogenol B in the Caco-2 cell 

model might not be a result of low transport by Caco-2 cells, but probably due to the low 

permeability through the polycarbonate membrane on which the cells grew. The 

collagenated polycarbonate membrane (0.45 (am) has been commonly used in transport 

studies and considered as a better supporting membrane for Caco-2 cell growth and 

differentiation with low adsorption to many drugs (Hidalgo et al. 1989; Artursson 1990). 

Some hydrophobic molecules, such as ^-sitosterol and dexamethasone, have been shown to 

be permeable across the Caco-2 cell monolayer growing on the 0.45 |4.m polycarbonate 

membrane (Field et al. 1997; Artursson and Karlsson 1991). However, our observations 

suggested that hydrophobic molecules like soyasapogenol B might not be permeable to this 

membrane material. The very low absorbability obtained in the Caco-2 model studies might 

not represent the real absorbability of the compounds in this situation. Cogbum et al. (1991) 

demonstrated that the diffusion rate across the cell-free membrane filter of some lipophillic 

compounds, such as alprenolol and propranolol, was approximately half of that of a 

hydrophilic compound, mannitol. They indicated that different compounds could have very 

different permeability over the membrane which supported Caco-2 cell growth, and 

suggested a correction for transport across the blank membrane filter should be performed to 
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normalize the transport rates of all compounds relative to each other. In our study, it would 

have been better to assess the permeability of soyasapogenol B over different filter 

membranes first to choose the permeable membrane prior to transfer assay. 

When examining the cell uptake of the test compounds, we found that 5.4 to 12.3% of 

soyasapogenol B was found in the cells. Unlike soyasaponin I, soyasapogenol B 

accumulated in the cells in a concentration-dependent manner (Figure 2). The uptake of 

soyasapogenol B was significantly higher than that of soyasaponin I at 0.5 and 3 mM 

concentrations (P < 0.05) but not different at 1 mM. The uptake of saponins or sapogenols 

by intestinal enterocytes is not known. However, the uptake of phytosterols by rat intestinal 

epithelial cells or Caco-2 cells has been reported. Field et al. (1997) reported the uptake of 

0.1 mM sitosterol by Caco-2 cells was 0.5 x 10"3/?mol/insert after 4 h incubation, about half 

of the uptake of cholesterol. Compassi et al. (1997) demonstrated the uptake of sitosterol by 

Caco-2 cells was 25 to 75% at a concentration range of 4 to 100 fiM, and suggested that, in 

contrast to cholesterol absorption, the low absorbability of sitosterol was due to the low 

intracellular processing and basolateral secretion but not the low uptake at the brush border 

membrane (BBM). Our data indicates that soyasapogenol B could be uptaken by Caco-2 

cells and accumulated in the cells. At the concentration range of 0.5 to 3 mM, the higher 

concentration of soyasapogenol B in the lumen, the more soyasapogenol B molecules could 

accumulate in the cells. Based on our observations from this study, we would not be able to 

conclude whether soyasapogenol B can be transported across the Caco-2 cell monolayer at 

this point, and the evidence is insufficient to predict absorbability of soyasapogenol B in the 

intestine. 
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Although the Caco-2 cell model has been widely used to evaluate absorbability and 

mucosal metabolism of many nutrients and phytochemicals, no study has reportedly used this 

model to measure saponin absorbability. In our study, the transport of soyasaponins was 

evaluated as the crystalline material of soyasaponin suspended in the aqueous transport 

buffer. However, the absorption of soyasaponins in the intestine might be more complicated 

because of the interaction of soyasaponins with other constituents of gut content. Some 

evidence indicated that the uptake and absorption of soy phytosterols could be facilitated by 

partition of bile salt micelles due to their structural similarity to cholesterol (Bhattaacharyya 

1981; Ostlund et al. 2002). The uptake of sitosterol by BBM vesicle and Caco-2 cells 

appeared to be energy-independent and facilitated in a manner analogous to cholesterol 

uptake (Thurn-Hofer and Hauser 1990; Schulthess et al. 1996). It is likely that the 

absorption of dietary soyasaponins might be enhanced by partition of micelles in the intestine 

due to the amphiphilic nature of soyasaponins and their structural resemblance to cholesterol 

to some extent. The method for micelle incorporation with cholesterol or phytosterols has 

been well established and widely used in the cholesterol absorption related studies (Field et 

al. 1997; Compassi et al. 1995). Hence, future studies are warranted to modify the transport 

assay by incorporating soyasaponins into bile salt micelles and measuring the transport of 

soyasaponins in the Caco-2 cell model. 

Lennemas (1997) reported the correlations of permeability from different in vitro 

transport models with human oral absorption data. It was found that permeability of the 

compounds via passive transport across the Caco-2 monolayer was comparable to those seen 

in the human intestine but was much lower for large hydrophobic compounds and carrier-

mediated transported compounds. Since the transport kinetics of soyasaponin I across the 
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Caco-2 cell monolayer did not support a passive diffusion mechanism, it is reasonable to 

consider that a relatively higher absorption rate than that observed in vitro might be expected 

in the human intestine. 

In order to determine if the concentrations of soyasaponin I and soyasapogenol B in 

our study damaged Caco-2 cells, acute cytotoxicity was estimated by measuring cell viability 

with dye exclusion test after the Caco-2 cell monolayer was treated with the same conditions 

used in the transport assay (Figure 3). The percent of dye-excluding cells ranged from 89.3 

to 96.2% for all groups. Significant differences existed among the different treatment groups 

(P < 0.01). The percentage of viable dye-excluding cells in soyasaponin I treatment groups 

at all three concentrations was not significantly different from the control group. However, 1 

mM and 3 mM of soyasapogenol B significant reduced percentage of viable dye-excluding 

cells in the culture compared to the control, while 0.5 mM soyasapogenol B did not show a 

cytotoxic effect. 

It is not surprising that soyasaponin I did not display apparent toxic effect on the cells 

after 4 h of exposure. Sung et al. (1995) demonstrated that 1 h exposure of soyasaponins up 

to 600 ppm did not result in any change on the viability of human colon carcinoma (HCT-15) 

cells, whereas gypsophilla saponins decreased cell viability significantly at same 

concentrations. Berhow et al. (2000) reported that 50 to 250 pg/mL soyasaponins had no 

acute cytotoxic effect on Chinese hamster ovary (CHO) cells. Our data further demonstrate 

that soyasaponins might not have an apparent cytotoxicity to intestinal epithelial cells even at 

concentrations up to 3 mM. It would be interesting to test whether soyasaponins are 

cytotoxic over a longer exposure period because of the approximate 24 to 48 h that food 

residue may stay in the gut and interact with gut epithelial cells. Although soyasaponins 
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proliferation by soyasaponins has been reported (Sung et al. 1995; Lacaille-Dubois and 

Wagner 1996; Oh and Sung 2001). Therefore, the observed colon cancer inhibitory effect of 

dietary soyasaponin (Rao and Sung 1995; Koratkar and Rao 1997) might not be attributed to 

the direct cytotoxic activity but partially due to the growth inhibitory activity of 

soyasaponins. 

Berhow's study (2000) showed that a 2 h treatment of 0.4 mM soyasapogenol B had 

no significant effect on CHO cell viability. Rowlands et al. (2002) reported a growth 

inhibitory effect of 10 \iM soyasapogenol B to human breast cancer cells. Our findings 

suggest that soyasapogenol B was cytotoxic to Caco-2 cells at concentrations above 1 mM 

Soyasapogenol B showed protection of CHO cells against direct DNA damage induced by 

2AAAF, possibly by intercepting reactive molecules inside the cells (Berhow et al. 2000). 

Our transport data also showed a high uptake of soyasapogenol B by Caco-2 cells. These 

evidences together suggest that, unlike soyasaponins interacting with the cell membrane, 

soyasapogenol B might exert its cytotoxicity inside the cells. Further research is required to 

explore the mechanisms and potency of cytotoxicity of soyasapogenol B on cancerous and 

normal cells. 

In conclusion, our findings clearly show that ingested group B soyasaponins can be 

metabolized to soyasapogenol B by human intestinal microorganisms in vivo and excreted in 

the feces. The data generated in the Caco-2 transport experiment indicate that soyasaponins 

may have low absorbability in the human intestine. The apical-to-basolateral transport of 

soyasaponin I by the Caco-2 cells indicates that the absorption of soyasaponins may be 

limited by the capacity of epithelial cells to uptake and transfer soyasaponins to the 
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basolateral side in the gut. The uptake of soyasaponin I by gut epithelial cells might be 

saturable, in contrast, the uptake of soyasapogenol B might depend upon its concentration in 

the lumen. Dietary soyasaponins may not have an apparent cytotoxic effect on the gut 

enterocytes, while high concentration of their gut metabolites, soyasapogenols, might be 

relatively toxic. 
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Legends to the figures: 

Scheme 1. Structures of soyasaponin I and soyasapogenol B 

Figure 1. The transport kinetics of soyasaponin I across Caco-2 monolayer at 0.5, 1. and 3 

mM concentrations. The plot was the linear regression of the amount of soyasaponin I 

transported to the basal chamber versus incubation time. Each data point represents the mean 

± SD of three replicates. 

Figure 2. The accumulation of soyasaponin I and soyasapogenol B at 0.5, 1, and 3 mM 

concentrations in the Caco-2 cells after 4 h incubation. The values are shown as mean ± SD 

of duplicate. The letter a, b, and c indicate significant differences in the accumulations 

among the groups (P < 0.05). 

Figure 3. The cytotoxicity of soyasaponin I and soyasapogenol B at 0.5, 1, and 3 mM 

concentrations to the Caco-2 cells. The cytotoxicity was presented as the percentage of 

viable cells harvested after treatment. The values are shown as mean ± SD of duplicate. The 

letter a, b, and c indicate significant differences in cell viability among the groups (P < 0.05). 
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Table 1. Soyasaponin I and soyasapogenol B contents in the urine and feces (N=8) 

Sample Soyasaponins (gmoles) Soyasapogenol B (pmoles) 

Urine 24 h nd nd 

Feces Day 0 nd 5.00 ± 3.54 (n = 3) 

Day 1 nd 11.65 ±2.92 (n = 8) 

Day 2 nd 8.99 ± 1.15 (n = 6) 

Day 3 nd 5.24 ± 1.01 (n = 7) 

Day 4 nd 5.75 ± 0.68 (n = 4) 

Total nd 36.27 ± 3.59 (n = 8) 

nd: not detected. The values are expressed as Mean ± SE. Day 0 was the day the subjects ingested 
the single dose of soy extract. The dose was 435.6 ^moles/person. 
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Table 2. The apical-to-basolateral transport of soyasaponin I and soyasapogenol B 
across the Caco-2 cell monolayer 

P app (cm/sec) P tra„s (cm/sec) T o.i (hour) 

Concentration (mM) 0.5 l.O 3.0 0.5 1.0 3.0 0.5 1.0 3.0 

Soyasaponin I 3.6±0.5xl0"6 l.l±0.3xl0"6 0.9±0.1xl0"6 3.6±0.4xl0"6 1.2±0.4xl0"6 1.0±0.3 xlO'6 11.4 36.0 87.6 

Soyasapogenol B 0.3±0.1xl0'6 0.6±0.1xl0"6 0.6+0,2xl0"6 <0 <0 <0 
— — — 

The real permeability coefficient ?%%% was calculated from Papp and T0.i is the times needed to transfer 10% of the 
compounds from apical chamber to basolateral chamber and calculated from the respective transport rate constants based on P^s-
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GENERAL CONCLUSIONS 

Soyasaponins, one of the main phytochemicals found in soybeans and soy products, 

have not attracted as much attention as soy isoflavones. A number of studies investigating 

soyasaponin's biological activities suggested that these compounds may have potential in 

improving human health. Most of these studies were conducted in in vitro systems and a few 

were animal experiments. The saponin doses used in these studies were not well justified 

and might be high relative to the possible physiological concentrations in humans. 

Therefore, the relevance of their findings to humans under in vivo conditions is not clear. In 

order to understand the mechanisms and predict the beneficial effects of dietary soyasaponins 

in humans, it is crucial to know the bioavailability and metabolism of these compounds. To 

our knowledge, our study will be the first to report the gut metabolism and absorption of 

dietary soyasaponins. 

Our first study answered the question of what happens to soyasaponins in the human 

intestine after ingestion. The in vitro fecal incubation study revealed that ingested 

soyasaponins may be metabolized by human intestinal microflora present in the lower gut to 

molecules with fewer or no sugars attached to the aglycone. Individual variation exists in 

their ability to metabolize soyasaponins in the gut, probably due to the differences in gut 

microflora populations and/or bacterial enzyme activity. Further studies can be in the 

directions of identifying of the bacterial species in the human intestinal tract that hydrolyze 

soyasaponins, and exploring the factors that affect individual ability to metabolize 

soyasaponins in the gut. 
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Little was known about the bioavailability and absorption kinetics of soyasaponins in 

the human intestine. Our human feeding study further demonstrated the existence of gut 

microbial metabolism of soyasaponins in vivo by showing the presence of soyasaponin 

aglycones in the feces after oral dosing. However, our results from this feeding study could 

not provide a distinct conclusion on soyasaponin bioavailability since neither soyasaponins 

nor their gut metabolite, soyasapogenols, were detected in the urine of the subjects. 

Therefore, a Caco-2 transport assay was conducted to evaluate the absorbability of 

soyasaponins at the cellular level. The data generated in the Caco-2 transport experiment 

showed that ingested soyasaponins could be taken up by gut epithelial cells, but their 

absorption may be very low and limited by the capacity of epithelial cells to uptake and 

transfer soyasaponins to the basolateral side. In addition, the absence of direct cytotoxicity 

of soyasaponin I to the Caco-2 cells suggests that dietary soyasaponins may not be toxic to 

the gut enterocytes. In contrast, a high concentration of soyasaponin's gut metabolites, 

soyasapogenols, might be relatively toxic. 

There were limitations in our studies. In the human feeding study, blood samples 

were not collected and analyzed because there were no established methods to analyze 

soyasaponins in the limited volume of blood samples. Our ability to identify the possible 

soyasaponin metabolites formed in vivo was also limited due to the complex nature of these 

compounds. It would be valuable for future work to have soyasaponins with an isotope-

labeled aglycone to trace the fate of ingested soyasaponins in animal models or humans if 

allowed. In our Caco-2 transport experiment, the crystalline materials of soyasaponin I and 

soyasapogenol B were directly dissolved and applied in the apical chambers to test their 

absorbability. It is likely that the absorption of dietary soyasaponins might be enhanced by 
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partition of micelles in the intestine due to the amphiphilic nature of soyasaponins and their 

structural resemblance to cholesterol to some extent. Hence, future studies are warranted to 

modify the transport assay by incorporating soyasaponins into bile salt micelles and 

measuring the transport of soyasaponins in the Caco-2 cell model. The research on the 

mechanisms of soyasaponin transport by gut epithelial cells, and the mechanisms and 

potency of cytotoxicity and cytostatic effect of soyasapogenols on cancerous and normal 

cells, also deserves further exploration. 
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APPENDIX 1. FOOD LIST FOR HUMAN FEEDING STUDIES 

AVOID the following foods which may contain soy soyasaponins during the wash-out days 
and experiment period. 

I Soy Protein Isolate 
Soybeans 
Tofu 
Soymilk, Soymilk powder 
Soybean sprouts 
Tempeh 
Miso soup 
Special K frozen waffles 
Carnation Instant Breakfast-chocolate malt flavored 

II. Food Containing Texturized Vegetable Protein 
Frozen pizza 

Burritos 
Morningstar Farm breakfast links, patties, strips 
La Choy lobster egg rolls 
Liquid non-dairy creamers 

III. Foods Containing Hydrolyzed Vegetable Protein (HVP) 
Most chip dips (French onion and some others) 
Garden vegetable flavored cheese spreads 
Tombstone frozen pizza with meat 
Some franks (John Morrel, Hormel Light & Lean, etc.) 
Sauce mixes - gravy (usually brown), chili, etc. 
Knorr soup mixes 
Knorr dry sauce mixes except "Pesto" 
Canned soups(usually those containing vegetable & meat, like chicken and mushroom) 
La Choy foods as well as oriental style mixes, etc. (containing HVP or soy sauce) 
Soy sauce has soybeans pr protein extracts from soybeans 
Ramen noodles containing HVP and /or soy sauce powder 
Heinz worstershire sauce(containing HVP in soy sauce) 
Hiland Red Hot Piplets(most other chips and snacks were fine) 
Uncle Ben's Rice mix 
Herbal magic salad dressing, Girad's salad dressing 
Most bacon flavored bits 

IV. Food Rich in Soyasaponins 
Green beans, kidney beans, broad beans, mung beans, 
Chickpeas, garden peas, green peas, pea flour, 
Ginseng and ginseng tea, lupin seeds, lentils, alfalfa sprouts 
Herbal medicines and teas 
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APPENDIX 2.13C AND H -NMR SPECTRA DATA FOR 
SOYASAPONIN III 

'OH 
"CHj CH3 

ch3 

COOH 

OH 
OH 

CH2OH 

OH 

OH 

Chemical shifts a 

Carbon position 13c H 
Aglycone moiety 

3 89.2 3.42s 
12 121.1 5.19s 
13 142.9 
22 80.7 3.34d (6.8) 
24 62.8 3.3d (12.0), 4.05d (11.9) 

3-O-glucuronopyranosyl 
1' 103.5 4.34d (7.7) 
2' 78.9 
3' 74.4 
4' 71.8 
5' 76.9 
6' 172.0 

2 ' -O-galactopyranosyl 
1" 103.6 4.49d (7.3) 
2" 71.9 
3" 73.2 
4" 68.8 
5" 75.2 
6" 59.8 

*: 13C APT-NMR and 'H -NMR spectra were acquired on a Varian VXR-300 
spectrometer. The sample was dissolved in DMSO-dô. The ppm values are relative to the 
chemical shift of TMS. The numbers in the parentheses are J values. 
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APPENDIX 3.13C AND H -NMR SPECTRA DATA FOR 
SOYASAPOGENOL B 

OH CHj CH3 

H' 

Position 
Chemical shifts a 

Position 
Chemical shifts a 

Position C 'H Position UC 'H 
1 38.5 16 27.5 
2 25.6 17 36.4 
3 76.3 3.493s 18 44.8 2.088s 
4 42.0 19 46.2 
5 55.8 20 30.5 
6 18.7 21 41.3 
7 33.0 22 81.0 3.44t(5.1) 
8 39.7 23 22.5 
9 47.8 24 64.7 3.425d (11.1), 

4.20d (10.8) 
10 37.2 25 16.2 
11 23.6 26 16.0 
12 122.0 5.246s 27 25.5 
13 143.9 28 27.9 
14 42.8 29 32.5 
15 28.0 30 19.9 

*: 13C APT-NMR and ]H -NMR spectra were acquired on a Varian VXR-300 
spectrometer. The sample was dissolved in chloroform-de. The ppm values are relative to the 
chemical shift of TMS. The numbers in the parentheses are J values. 
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